Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Partitioned matrices, random vectors        52—3    
Partitioned matrices, Schur complements        10—6 to 10—8    
Partitioned matrices, submatrices        10—1 to 10—3    
Partitioned matrices, submatrices and block matrices        10—1    
Partly decomposable        27—3    
Pascal matrices, factorizations        21—6    
Pascal matrices, totally positive and negative matrices        21—4    
Passage class        54—5    
Path cover number        34—4    
Path of length        28—1   28—2    
Path, digraphs        29—2    
Path, modeling and analyzing fill        40—10    
Path, sign-pattern matrices        33—2    
Path-connection        P—5    
Pattern block triangular form        35—2    
Patterns        27—1   see    
Payoff matrix        50—18    
Peak characteristics        26—9    
peaks function, Matlab software        71—17    
PEIEPs (prescribed entries inverse eigenvalue problems)        20—1 to 20—3    
PEIPs        see «Affine parameterized IEPs (PIEPs)»    
Pencils, matrix, generalized eigenvalue problem        43—2    
Pencils, matrix, linear differential-algebraic equations        55—7    
Pencils, matrix, matrices over integral domains        23—9 to 23—10    
Pendant path        34—2    
Penrose conditions        5—12    
Perfect code        61—2    
Perfect elimination ordering, bipartite graphs        30—4    
Perfect elimination ordering, reordering effect        40—14    
Perfect matching        30—2    
Perfectly well determined, high relative accuracy        46—8    
Period, complex sign and ray patterns        33—14    
Period, Fourier analysis        58—2    
Period, imprimitive matrices        29—10    
Period, irreducible matrices        9—3    
Period, linear dynamical systems        56—5    
Period, reducible matrices        9—7    
Period, Simon’s problem        62—13    
Periodic characteristics, Fourier analysis        58—2    
Periodic characteristics, irreducible classes        54—5    
Periodic characteristics, linear dynamical systems       56—5    
Periodic linear differential equations       56—12 to 56—14    
Peripheral eigenvalues        26—6    
Peripheral spectrum, cone invariant departure, matrices       26—5 to 26—7    
Peripheral spectrum, Perron — Schaefer condition       26—6    
perm, Mathematica software       73—19    
permanent, Mathematica software       73—12    
Permanental dominance conjecture       31—13    
Permanents,  -matrices       31—8    
Permanents, binary matrices        31—5 to 31—7    
Permanents, determinant connections        31—12 to 31—13    
Permanents, doubly stochastic matrices       31—3 to 31—4    
Permanents, evaluation       31—11 to 31—12    
Permanents, fundamentals       31—1 to 31—3    
Permanents, matrices over       31—8 to 31—9    
Permanents, max-plus algebra       25—9 to 25—10    
Permanents, nonnegative matrices        31—7    
Permanents, rook polynomials       31—10 to 31—11    
Permanents, subpermanents        31—9 to 31—10    
permMatr, Mathematica software        73—19    
Permutation invariants, absolute norm        17—5    
Permutation invariants, vector norms       37—2    
Permutation matrix, fundamentals       1—6    
Permutation matrix, Gauss elimination       38—7    
Permutation matrix, matrices       1—4    
Permutation matrix, systems oflinear equations       1—13    
Permutations, eigenvalue problems        15—2    
Permutations, equivalence       31—1    
Permutations, fundamentals       P—5    
Permutations, pattern       33—2    
Permutations, representation        68—3    
Permutations, restricted positions       31—6    
Permutations, similarity       27—5   33—2    
Perpendicular bisectors       65—4    
Perpendicular hyperplanes       66—2    
Perron branch       36—5    
Perron component       36—10    
Perron spaces, Collatz — Wielandt sets       26—4    
Perron spaces, K-reducible matrices       26—10    
Perron value, convergence properties       9—9 to 9—10    
Perron value, irreducible matrices       9—4 to 9—5    
Perron value, nonnegative and stochastic matrices       9—2    
Perron value, nonzero spectra        20—7    
Perron value, reducible matrices       9—8 to 9—10    
Perron — Frobenius theorem, cone invariant Perron — Frobenius theorem, departure, matrices       26—1 to 26—3    
Perron — Frobenius theorem, elementary analytic results       26—12    
Perron — Frobenius theorem, irreducible matrices       9—4   29—6    
Perron — Frobenius-type results       9—10    
Perron — Schaefer condition       26—5 to 26—7    
Perron’s theorem       9—3    
Persistently exciting of order       64—12    
Personalization vector       63—11    
Pertinent pages, Web search        63—9    
Perturbation theory, matrices, eigenvalue problems       15—1 to 15—6   15—9   15—13    
Perturbation theory, matrices, polar decomposition       15—7 to 15—9    
Perturbation theory, matrices, relative distances        15—13 to 15—16    
Perturbation theory, matrices, singular value problems       15—6 to 15—7   15—12   15—15    
Perturbations       38—2 to 38—5    
Perturbed linear system       38—2    
Petersen graphs, adjacency matrices       28—7    
Petersen graphs, embedding        28—5    
Petersen graphs, graph parameters       28—10    
Petersen graphs, Laplacian       28—9    
Petersen graphs, nonsquare case       32—11    
Petrie matrix       30—4   30—5   30—7    
Petrov — Galerkin projection, Arnoldi process       49—10    
Petrov — Galerkin projection, eigenvalue computations       49—12    
Petrov — Galerkin projection, Krylov subspaces       49—5    
Petrov — Galerkin projection, large-scale matrixcomputations        49—2    
Petrov — Galerkin projection, symmetric Lanczos process       49—7    
Pfaffian properties       12—5    
Phase 2 geometric interpretation       50—13    
Phillips regularization        39—9    
Physical sciences applications       59—1 to 59—11    
Pi function, Mathematica software       73—26    
pi function, Matlab software        71—4    
Pi theorem        47—8   47—9    
Pick’s inequalities       14—2    
PID (principal ideal domain)       23—2    
Pierce decomposition        69—13    
Pillai’s trace statistic        53—13    
Pinching, inequalities        17—7    
Pisarenko’s method       64—14    
Pivot column       1—7    
Pivot row       1—7    
Pivot step        50—10    
Pivoted QR factorization       39—11    
Pivoting, elements, Jacobi method       42—17    
Pivoting, elimination       1—7   38—7    
Pivoting, Gauss — Jordan elimination       1—7    
Pivoting, Jacobi method        42—17   42—18    
Pivoting, linear programming       50—10 to 50—11    
Pivoting, LU decomposition       38—10    
Pivoting, positions        1—7    
Pivoting, preconditioned Jacobi SVD algorithm       46—5    
Pivoting, reordering effect       40—18    
Planar graphs       28—4    
Planck’s constant       59—6    
Plane, affine spaces       65—2    
planerot function, Matlab software        42—9    
PLDU factorization       1—14 to 1—15    
plot command, Matlab software       71—14    
Plotkin bound       61—5    
PLU factorization       1—13    
Plus algebra       69—3    
Plus, Mathematica software        73—27    
PO (potentially orthogonality)        33—16    
Poincare — Bendixson theorem       56—8    
Poincare — Birkhoff — Witt theorem, Lie algebras       70—3    
Poincare — Birkhoff — Witt theorem, Malcev algebras        69—17    
Poincare — Birkhoff — Witt theorem, nonassociative algebra       69—3    
Point spaces       66—1 to 66—5    
Point-wise bounded       37—3    
Point-wise similarity       24—1    
Pointed cones       8—10    
Points, affine spaces       65—2    
Points, Euclidean point space        66—1    
Points, projective spaces        65—6    
Poisson’s equation, discrete theory       58—12    
Poisson’s equation, Green’s functions       59—11    
Polar cones        51—3    
Polar decomposition, perturbation theory       15—7 to 15—9    
Polar decomposition, singular values       17—1    
Polar form, positive definite matrices        8—7    
Polar form, singular values       17—1    
PolarDecomposition, Mathematica software       73—19    
Polarization formula       12—8    
Polarization identity        5—3   13—11    
Policy iteration algorithm       25—7    
Polya matrix       21—11    
Polyhedral cones        26—4    
Polynomials, adjacency matrix       28—5    
Polynomials, certain integral domains       23—1    
Polynomials, eigenvalues and eigenvectors       4—6   4—8    
Polynomials, interpolation       11—2    
Polynomials, linear code classes       61—7    
Polynomials, numerical hull       41—16    
Polynomials, restarting       44—5 to 44—6    
Polynomials, span and linear independence       2—2    
Polynomials, stability       19—3    
Polynomials, vector spaces        1—3    
Polynomials, zeros        37—8    
PolynomialTools, Maple software       72—20   72—21    
Population       52—2    
Population canonical correlations and variates       53—7    
Population principal component        53—5    
Positionally symmetric partial matrix       35—2    
Positive definite Jacobi EVD        46—11    
Positive definite matrices (PSD)       see «Completely positive matrices»    
Positive definite matrices (PSD), completion problems        35—8 to 35—9    
Positive definite matrices (PSD), fundamentals       8—6 to 8—12    
Positive definite matrices (PSD), high relative accuracy       46—10 to 46—14    
Positive definite matrices (PSD), inner product spaces       5—2    
Positive definite matrices (PSD), symmetric factorizations       38—15    
Positive definite properties, Hermitian forms       12—8    
Positive definite properties, matrix norms        37—4    
Positive definite properties, symmetric bilinear forms        12—3    
Positive definite properties, vector norms       37—2    
Positive definite properties, vector seminorms       37—3    
Positive properties       see «Nonnegatives»    
Positive properties, eigenvectors       9—11    
Positive properties, Fiedler vectors       36—7    
Positive properties, generalized eigenvectors       9—11    
Positive properties, half-life       13—24    
Positive properties, matrix mapping        18—11    
Positive properties, orientation       13—24    
Positive properties, P-matrices       35—17 to 35—18    
Positive properties, Perron — Frobenius theorem       26—2    
Positive properties, recurrent state        54—7 to 54—9    
Positive properties, root, semisimple and simple algebras       70—4    
Positive properties, stability       19—3   26—13    
Positive properties, stable matrices       9—17    
Positive properties, vector seminorms       37—3    
Positive semidefinite properties, completion problems       35—8 to 35—9    
Positive semidefinite properties, Hermitian forms       12—8    
Positive semidefinite properties, matrix completion problems       35—8    
Positive semidefinite properties, positive definite matrices       8—6    
Positive semidefinite properties, semidefinite programming       51—3    
Positive semidefinite properties, symmetric bilinear forms        12—3    
Positive/null recurrent state        54—7 to 54—9    
Potent square sign or ray patterns        33—14    
Potential energy, Lagrangian mechanics       59—5    
Potential energy, oscillation modes       59—2    
Potential energy, protein motion modes        60—9    
Potential matrix       54—7 to 54—9    
Potential stability       33—7    
Potentially orthogonality (PO)       33—16    
Potentials, duality       50—17    
Powell-Reid’s complete pivoting       46—5   46—7    
Power associative algebras, general properties       69—5    
Power associative algebras, nonassociative algebra       69—14 to 69—16    
Power, algorithm       25—7    
Power, convergence properties        9—4   9—9    
Power, irreducible matrices        9—4    
Power, matrices        1—12    
Power, method        42—2    
Power, mth, matrices       1—12    
Power, reducible matrices       9—9    
Power, sign-pattern matrices        33—15 to 33—16    
Power, symmetric and Grassmann tensors        13—12    
Power, tensor products       13—3    
Precision, Mathematica software       73—17    
Precisions, ARPACK subroutine package       76—3 to 76—4    
Precisions, floating point numbers       37—12    
Precisions, vector space method        63—2    
Preconditioned conjugate gradient (PCG) algorithm        41—13    
Preconditioned Jacobi SVD algorithm        46—5 to 46—7    
Preconditioners, iterative solution methods, algorithms        41—12 to 41—14    
Preconditioners, iterative solution methods, fundamentals       41—11 to 41—12    
Preconditioners, iterative solution methods, Krylov subspaces       41—2 to 41—4    
Preconditioning, algorithms       41—12 to 41—14    
Preconditioning, coefficient matrix       49—4    
Preconditioning, iteration matrices        41—3    
Preconditioning, Jacobi SVD algorithm        46—5 to 46—7    
Preconditioning, Krylov subspaces and preconditioners       41—3    
Preconditioning, sparse matrix factorizations       49—4    
Predicable random signals       64—7    
Prediction error        64—7    
Prediction error filter        64—7    
prefixes       74—2    
Prepend, Mathematica software, matrices manipulation       73—13    
Prepend, Mathematica software, vectors       73—3    
Prescribed entries inverse eigenvalue problems (PEIEPs)        20—1 to 20—3    
Prescribed-line-sum scalings        9—21    
Preservation        see «Linear preserver problems»    
Preservation, bilinear forms        12—2    
Preservation, linear dynamical systems        56—5    
Preservation, Lyapunov diagonal stability       19—9    
Preservation, multiplicative D-stability       19—5    
Preservation, sesquilinear forms       12—6    
Primal-dual interior point algorithm        51—8 to 51—9    
Primary decomposition       6—9    
Primary Decomposition Theorem, eigenvectors       6—2    
Primary Decomposition Theorem, rational canonical form        6—10    
Primary factors       6—9    
Primary matrix function       11—2    
Prime elements       23—2    
Primitive Bose — Chadhuri — Hocquenghem (BCH) code       61—8    
Primitive properties, certain integral domains       23—2    
Primitive properties, digraphs and matrices       29—8 to 29—9    
Primitive properties, elements        69—18    
Primitive properties, gates        62—7    
Principal angles       17—14   17—15    
Principal Axes Theorem       7—5 to 7—6    
Principal character        68—5    
Principal component        26—12    
Principal component analysis       53—5 to 53—6    
Principal eigenprojection        26—12    
Principal ideal domain (PID)        23—2    
Principal ideals        23—2    
Principal logarithm        11—6    
Principal minors, determinants       4—3    
Principal minors, stability       19—3    
Principal parts       24—1    
Principal square root       11—5    
Principal submatrix, fundamentals        1—6    
Principal submatrix, matrices        1—4    
Principal submatrix, reducible matrices        9—7    
Principal submatrix, submatrices and block matrices       10—1    
Principal vectors       17—14    
                            
                     
                  
			 
		          
			Ðåêëàìà