Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Hogben L. — Handbook of Linear Algebra
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Handbook of Linear Algebra
Àâòîð: Hogben L.
Àííîòàöèÿ: The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2006
Êîëè÷åñòâî ñòðàíèö: 1400
Äîáàâëåíà â êàòàëîã: 30.06.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Distance, coding theory 61—2
Distance, Euclidean point space 66—2
Distance, Euclidean spaces 65—4
Distance, graphs 28—1
Distance, inner product spaces 5—1
Distance, NMR protein structure determination 60—2
Distance, numerical range 18—1
Distance-regular graph 28—11
Distinguished eigenvalues, cone invariant departure, matrices 26—3 to 26—5
Distinguished eigenvalues, nonnegative and stochastic matrices 9—2
Distinguished face 26—5
Distributivity 69—1
Distributivity axiom 1—1
Divide and Conquer Bidiagonal singular value decomposition 45—10
Divide and conquer method 42—12 to 42—14
Division algebra 69—2 69—4
Division property 6—11
DLAR2V LAPACK subroutine 42—9
DLARGV LAPACK subroutine 42—9
DLARTV LAPACK subroutine 42—9
Document vector 63—1
Documents, retrieved 63—2
Domain decomposition methods 41—12
Domain, linear transformations 3—1
Dominant eigenvalue 42—2
Dong, Qunfeng 60—13
Dongarra, Jack 74—1 to 74—7 75—1 77—1
DORGTR LAPACK subroutine 42—8
Dot product, Bernstein — Vazirani problem 62—11
Dot product, floating point numbers 37—14
Dot product, inner product spaces 5—2
Dot, Mathematica software, matrices 73—8
Dot, Mathematica software, vectors 73—4
DotProduct, Maple software 72—3
Double directed tree 29—2
Double echelon form 21—2
Double generalized stars 34—11 to 34—14
Double path, generalized stars 34—11
DOUBLE PRECISION 37—13
double stars 34—11
Doubly nonnegative matrices 35—10 to 35—11
Doubly stochastic matrices, combinatorial matrix theory 27—10 to 27—12
Doubly stochastic matrices, fundamentals 9—15
Doubly stochastic matrices, permanents 31—3 to 31—4
Downdating 39—8 to 39—9
Downer branch 34—2
Downer vertex 34—2
Drazin inverse 55—7
Drmac, Zlatko 46—1 to 46—16
Drop, Mathematica software, fundamentals 73—27
Drop, Mathematica software, matrices manipulation 73—13
Drop, Mathematica software, vectors 73—3
Drop-off condition 21—12
DROT BLAS routine 42—9
DSBTRD LAPACK subroutine 42—9
DSDRV ARPACK routine 42—21
DSTEBZ LAPACK subroutine 42—15
DSTEDC LAPACK subroutine 42—14
DSTEGR LAPACK subroutine 42—17
DSTEIN LAPACK subroutine 42—15
DSTU (diagonally scaled totally unimodular) matrices, rank revealing decomposition 46—8
DSTU (diagonally scaled totally unimodular) matrices, rank revealing decompositions 46—9
DSYEV LAPACK subroutine 42—11
DSYTRD LAPACK subroutine 42—8
Dual linear program 25—5
Duality theorem 51—7
Duality, code 61—3
Duality, cones 8—11 26—2
Duality, control theory 57—2
Duality, inner product spaces 13—23
Duality, linear functionals and annihilator 3—8
Duality, linear programming 50—13 to 50—17
Duality, optimality conditions 51—6
Duality, projective spaces 65—7
Duality, rectangular matrix multiplication 47—5
Duality, semidefinite programming 51—5 to 51—7
Duality, vector norms 37—2
Dulmage — Mendelsohn Decomposition theorem 27—4
Dynamic compensator 57—13
Dynamic programming 25—3
Dynamical systems, chain recurrence 56—7 to 56—9
Dynamical systems, eigenvalues and eigenvectors 4—11
Dynamical systems, flag manifolds 56—9 to 56—11
Dynamical systems, Floquet theory 56—12 to 56—14
Dynamical systems, fundamentals 56—1 to 56—2
Dynamical systems, Grassmannians 56—9 to 56—11
Dynamical systems, linear differential equations 56—2 to 56—4
Dynamical systems, linear dynamical systems 56—5 to 56—7
Dynamical systems, linear skew product flows 56—11 to 56—12
Dynamical systems, linearization 56—19 to 56—21
Dynamical systems, Morse decompositions 56—7 to 56—9
Dynamical systems, periodic linear differential equations 56—12 to 56—14
Dynamical systems, random linear dynamical systems 56—14 to 56—16
Dynamical systems, robust linear systems 56—16 to 56—19
Eckart — Young low rank approximation theorem 5—11
ED (Euclidean domain) 23—2
ED-RCF (elementarydivisors rational canonical form) matrix 6—8 to 6—9
EDD (elementary divisor domain) 23—2
Edge cut 36—3
Edges, digraphs 29—1
Edges, Euclidean simplexes 66—7
Edges, graphs 28—1 28—4
Effects of reordering 40—14 to 40—18
Efficacy, methods comparison 42—21
Efficiency, error analysis 37—16 to 37—17
egn, Mathematica software 73—21
egns, Mathematica software 73—20
eig command, Matlab software, eigenvalues 15—5
eig command, Matlab software, fundamentals 71—9 71—17 71—18
eig command, Matlab software, implicitly restarted Arnoldi method 44—1
eig command, Matlab software, Lanczos methods 42—21
EigenConditionNumbers, Maple software 72—15
Eigenpairs, eigenvalue problems 15—10
Eigenpairs, matrix perturbation theory 15—1
Eigenproblems, max-plus algebra 25—6 to 25—8
Eigenproblems, nonsymmetric, LAPACK subroutine package 75—17 to 75—20
Eigensharp characteristic 30—8
Eigenspaces, eigenvalues and eigenvectors 4—6
Eigenspaces, max-plus eigenproblem 25—6
Eigenspaces, nonnegative and stochastic matrices 9—2
Eigensystem, Mathematica software 73—14 73—15 73—16
Eigentriplets, eigenvalue problems 15—9 to 15—10
Eigentriplets, matrix perturbation theory 15—1
Eigenvalue decomposition (EVD) 42—2
Eigenvalues and eigenvectors, adjacency matrix 28—5
Eigenvalues and eigenvectors, canonical forms 6—2 to 6—3
Eigenvalues and eigenvectors, cone invariant departure, matrices 26—3 to 26—5
Eigenvalues and eigenvectors, fundamentals 4—6 to 4—11
Eigenvalues and eigenvectors, generalized eigenvalue problem 43—1 to 43—3
Eigenvalues and eigenvectors, graphs 28—5 to 28—7
Eigenvalues and eigenvectors, Hermitian matrices 17—13 to 17—14
Eigenvalues and eigenvectors, inequalities 17—9 to 17—10
Eigenvalues and eigenvectors, LAPACK subroutine package 75—9 to 75—11 75—11
Eigenvalues and eigenvectors, large-scale matrix computations 49—12
Eigenvalues and eigenvectors, Maple software 72—11 to 72—12
Eigenvalues and eigenvectors, Mathematica software 73—14 to 73—16
Eigenvalues and eigenvectors, Matlab software 71—9
Eigenvalues and eigenvectors, matrix equalities and inequalities 14—1 to 14—5 14—8
Eigenvalues and eigenvectors, multiplicity lists 34—7 to 34—8
Eigenvalues and eigenvectors, numerical stability and instability 37—20
Eigenvalues and eigenvectors, pseudoeigenvalues and pseudo-eigenvectors 16—1
Eigenvalues and eigenvectors, reducible matrices 9—8 to 9—9 9—11
Eigenvalues and eigenvectors, Schrodinger’s equation 59—7
Eigenvalues and eigenvectors, sign-pattern matrices 33—9 to 33—11
Eigenvalues and eigenvectors, singular values and singular value inequalities 17—13 to 17—14
Eigenvalues and eigenvectors, sparse eigenvalue solvers, software 77—2
Eigenvalues and eigenvectors, spectrum and boundary points 18—3
Eigenvalues, high relative accuracy, accurate SVD 46—2 to 46—5 46—7
Eigenvalues, high relative accuracy, fundamentals 46—1 to 46—2
Eigenvalues, high relative accuracy, one-sided Jacobi SVD algorithm 46—2 to 46—5
Eigenvalues, high relative accuracy, positive definite matrices 46—10 to 46—14
Eigenvalues, high relative accuracy, preconditioned Jacobi SVD algorithm 46—5 to 46—7
Eigenvalues, high relative accuracy, rank revealing decomposition 46—7 to 46—10
Eigenvalues, high relative accuracy, structured matrices 46—7 to 46—10
Eigenvalues, high relative accuracy, symmetric indefinite matrices 46—14 to 46—16
Eigenvalues, Maple 72—11 72—12 72—14
Eigenvalues, Maple software 72—15
Eigenvalues, Mathematica software, eigenvalues 73—14 73—15
Eigenvalues, Mathematica software, fundamentals 73—27
Eigenvalues, Mathematica software, singular values 73—17
Eigenvalues, numerical methods, high relative accuracy computation 46—1 to 46—16
Eigenvalues, numerical methods, implicitly restarted Arnoldi method 44—1 to 44—12
Eigenvalues, numerical methods, iterative solution methods 41—1 to 41—17
Eigenvalues, numerical methods, singular value decomposition 45—1 to 45—12
Eigenvalues, numerical methods, symmetric matrix techniques 42—1 to 42—22
Eigenvalues, numerical methods, unsymmetric matrix techniques 43—1 to 43—11
Eigenvalues, problems, generalized 15—9 to 15—11
Eigenvalues, problems, perturbation theory 15—1 to 15—6 15—9
Eigenvalues, problems, relative perturbation theory 15—13 to 15—15
Eigenvalues, symmetric matrix techniques, bisection method 42—14 to 42—15
Eigenvalues, symmetric matrix techniques, comparison ofmethods 42—21 to 42—22
Eigenvalues, symmetric matrix techniques, divide and conquer method 42—12 to 42—14
Eigenvalues, symmetric matrix techniques, fundamentals 42—1 to 42—2
Eigenvalues, symmetric matrix techniques, implicitly shifted QR method 42—9 to 42—11
Eigenvalues, symmetric matrix techniques, inverse iteration 42—14 to 42—15
Eigenvalues, symmetric matrix techniques, Jacobi method 42—17 to 42—19
Eigenvalues, symmetric matrix techniques, Lanczos method 42—19 to 42—21
Eigenvalues, symmetric matrix techniques, method comparison 42—21 to 42—22
Eigenvalues, symmetric matrix techniques, methods 42—2 to 42—5
Eigenvalues, symmetric matrix techniques, multiple relatively robust representations 42—15 to 42—17
Eigenvalues, symmetric matrix techniques, tridiagonalization 42—5 to 42—9
Eigenvalues, unsymmetric matrix techniques, dense matrix techniques 43—3 to 43—9
Eigenvalues, unsymmetric matrix techniques, fundamentals 43—1
Eigenvalues, unsymmetric matrix techniques, generalized eigenvalue problem 43—1 to 43—3
Eigenvalues, unsymmetric matrix techniques, sparse matrix techniques 43—9 to 43—11
Eigenvectors, Maple software 72—11
Eigenvectors, Mathematica software 73—14
EIGS subroutine package 76—9 to 76—10
eigshow command, Matlab software 71—9
eigtool, Matlab software 16—12 71—20
Eijkhout, Victor 74—1 to 74—7 77—1
Electron density distribution function 60—7
Electrostatics 59—11
Element of volume 13—25
Element, Mathematica software 73—24
Elementary analytic results 26—12 to 26—13
Elementary bidiagonal matrices 21—5
Elementary column operations 6—11
Elementary divisors 6—8 to 6—11
Elementary divisors rational canonical form (ED-RCF) matrix 6—8 to 6—9
Elementary matrices 1—12
Elementary row operations, Gaussian and Gauss-Jordan elimination 1—7
Elementary row operations, matrix equivalence 23—5
Elementary row operations, Smith normal form 6—11
Elementary symmetric function P—2 to P—3
Elementarydivisor domain (EDD) 23—2
Eliminate, Mathematica software 73—20 73—23
Elimination graph 40—11
Elimination ordering 40—14
Elimination sequence 40—14
ELMAT directory, Matlab software 71—5
Elsner theorem 15—2
Embedding graphs 28—3
Embree, Mark 16—1 to 16—15
Empty graphs 28—2
Empty matrix 68—3
Encoder, coding theory 61—1
Encoder, linear block codes 61—3
Encoding 61—2
Endpoint 28—1
Energy norm 37—2
Entry weakly sign symmetric P-, and -matrices 35—19 to 35—20
Entry, matrices 1—3
Entrysign symmetric P-, and -matrices 35—19 to 35—20
Envelope method 40—16
Envelope, reordering effect 40—14
Epsilon-pseudospectrum, square matrix 71—20
eqns, Mathematica software 73—20
Equal matrices 1—3
Equalities and inequalities, matrices, determinantal relations 14—10 to 14—12
Equalities and inequalities, matrices, eigenvalues 14—1 to 14—5 14—8
Equalities and inequalities, matrices, inversions 14—15 to 14—17
Equalities and inequalities, matrices, nullity 14—12 to 14—15
Equalities and inequalities, matrices, rank 14—12 to 14—15
Equalities and inequalities, matrices, singular values 14—8 to 14—10
Equalities and inequalities, matrices, spectrum localization 14—5 to 14—8
Equality-constrained least squares problems 75—6 to 75—7
Equation solving, Maple software 72—9 to 72—11
Equations of motion 59—3
Equicorrelation matrix and structure 52—9
Equilibrium, linear dynamical systems 56—5
Equilibrium, matrix games 50—18
Equivalence class modulo 25—10
Equivalence relation P—3
Equivalence, bilinear forms 12—2
Equivalence, group representations 68—1
Equivalence, Hermitian forms 12—8
Equivalence, linear block codes 61—3
Equivalence, linear dynamical systems 56—5
Equivalence, linear independence, span, and bases 2—7
Equivalence, matrix equivalence 23—5
Equivalence, matrix representations 68—3
Equivalence, scaling nonnegative matrices 9—20
Equivalence, sesquilinear forms 12—6
Equivalence, systems oflinear equations 1—9
Equivalence, trees 34—8
Equivalence, vector norms 37—3
Ergodic class matrices 9—15
Ergodic flow 56—14
Ergodicity coefficient, bounds 9—5
Ergodicity coefficient, irreducible matrices 9—5
Ergodicity coefficient, nonnegative and stochastic matrices 9—2
Ergodicity coefficient, reducible matrices 9—10 to 9—11
Error analysis, algorithms 37—16 to 37—17
Error analysis, conditioning and condition numbers 37—7 to 37—9
Error analysis, efficiency 37—16 to 37—17
Error analysis, floating point numbers 37—11 to 37—16
Error analysis, fundamentals 37—1 to 37—2
Error analysis, linear systems conditioning 37—9 to 37—11
Error analysis, matrix norms 37—4 to 37—6
Error analysis, numerical stability and instability 37—18 to 37—21
Error analysis, vector norms 37—2 to 37—3
Error analysis, vector seminorms 37—3 to 37—4
Errors, estimation 41—16 to 41—17
Errors, Krylov subspaces and preconditioners 41—2
Errors, linear prediction 64—7
Errors, LTI systems 57—14
Errors, protection, coding theory 61—1
Errors, vectors 61—2
ESPRIT algorithm 64—17
Estimated principal components 53—5
Estimation error 57—14
Estimation of state 57—11 to 57—13
Estimation, correlations and variates 53—7 to 53—8
Estimation, least squares 53—11 to 53—12
Euclidean algorithm 6—11
Euclidean distance matrices 35—9 to 35—10
Euclidean Distance Matrix 51—9
Euclidean distance, Euclidean point space 66—2
Euclidean distance, metric multidimensional scaling 53—14
Euclidean domain (ED), certain integral domains 23—2
Euclidean domain (ED), matrix equivalence 23—6
Euclidean domain (ED), matrix similarity 24—2
Euclidean geometry, fundamentals 66—1
Euclidean geometry, Gram matrices 66—5 to 66—7
Euclidean geometry, point spaces 66—1 to 66—5
Euclidean geometry, resistive electrical networks 66—13 to 66—15
Euclidean geometry, simplexes 66—7 to 66—13
Euclidean norm, matrix norms 37—4
Euclidean norm, one-sided Jacobi SVD algorithm 46—4
Ðåêëàìà