Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hogben L. — Handbook of Linear Algebra
Hogben L. — Handbook of Linear Algebra



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Linear Algebra

Àâòîð: Hogben L.

Àííîòàöèÿ:

The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 1400

Äîáàâëåíà â êàòàëîã: 30.06.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Distance, coding theory      61—2
Distance, Euclidean point space      66—2
Distance, Euclidean spaces      65—4
Distance, graphs      28—1
Distance, inner product spaces      5—1
Distance, NMR protein structure determination      60—2
Distance, numerical range      18—1
Distance-regular graph      28—11
Distinguished eigenvalues, cone invariant departure, matrices      26—3 to 26—5
Distinguished eigenvalues, nonnegative and stochastic matrices      9—2
Distinguished face      26—5
Distributivity      69—1
Distributivity axiom      1—1
Divide and Conquer Bidiagonal singular value decomposition      45—10
Divide and conquer method      42—12 to 42—14
Division algebra      69—2 69—4
Division property      6—11
DLAR2V LAPACK subroutine      42—9
DLARGV LAPACK subroutine      42—9
DLARTV LAPACK subroutine      42—9
Document vector      63—1
Documents, retrieved      63—2
Domain decomposition methods      41—12
Domain, linear transformations      3—1
Dominant eigenvalue      42—2
Dong, Qunfeng      60—13
Dongarra, Jack      74—1 to 74—7 75—1 77—1
DORGTR LAPACK subroutine      42—8
Dot product, Bernstein — Vazirani problem      62—11
Dot product, floating point numbers      37—14
Dot product, inner product spaces      5—2
Dot, Mathematica software, matrices      73—8
Dot, Mathematica software, vectors      73—4
DotProduct, Maple software      72—3
Double directed tree      29—2
Double echelon form      21—2
Double generalized stars      34—11 to 34—14
Double path, generalized stars      34—11
DOUBLE PRECISION      37—13
double stars      34—11
Doubly nonnegative matrices      35—10 to 35—11
Doubly stochastic matrices, combinatorial matrix theory      27—10 to 27—12
Doubly stochastic matrices, fundamentals      9—15
Doubly stochastic matrices, permanents      31—3 to 31—4
Downdating      39—8 to 39—9
Downer branch      34—2
Downer vertex      34—2
Drazin inverse      55—7
Drmac, Zlatko      46—1 to 46—16
Drop, Mathematica software, fundamentals      73—27
Drop, Mathematica software, matrices manipulation      73—13
Drop, Mathematica software, vectors      73—3
Drop-off condition      21—12
DROT BLAS routine      42—9
DSBTRD LAPACK subroutine      42—9
DSDRV ARPACK routine      42—21
DSTEBZ LAPACK subroutine      42—15
DSTEDC LAPACK subroutine      42—14
DSTEGR LAPACK subroutine      42—17
DSTEIN LAPACK subroutine      42—15
DSTU (diagonally scaled totally unimodular) matrices, rank revealing decomposition      46—8
DSTU (diagonally scaled totally unimodular) matrices, rank revealing decompositions      46—9
DSYEV LAPACK subroutine      42—11
DSYTRD LAPACK subroutine      42—8
Dual linear program      25—5
Duality theorem      51—7
Duality, code      61—3
Duality, cones      8—11 26—2
Duality, control theory      57—2
Duality, inner product spaces      13—23
Duality, linear functionals and annihilator      3—8
Duality, linear programming      50—13 to 50—17
Duality, optimality conditions      51—6
Duality, projective spaces      65—7
Duality, rectangular matrix multiplication      47—5
Duality, semidefinite programming      51—5 to 51—7
Duality, vector norms      37—2
Dulmage — Mendelsohn Decomposition theorem      27—4
Dynamic compensator      57—13
Dynamic programming      25—3
Dynamical systems, chain recurrence      56—7 to 56—9
Dynamical systems, eigenvalues and eigenvectors      4—11
Dynamical systems, flag manifolds      56—9 to 56—11
Dynamical systems, Floquet theory      56—12 to 56—14
Dynamical systems, fundamentals      56—1 to 56—2
Dynamical systems, Grassmannians      56—9 to 56—11
Dynamical systems, linear differential equations      56—2 to 56—4
Dynamical systems, linear dynamical systems      56—5 to 56—7
Dynamical systems, linear skew product flows      56—11 to 56—12
Dynamical systems, linearization      56—19 to 56—21
Dynamical systems, Morse decompositions      56—7 to 56—9
Dynamical systems, periodic linear differential equations      56—12 to 56—14
Dynamical systems, random linear dynamical systems      56—14 to 56—16
Dynamical systems, robust linear systems      56—16 to 56—19
Eckart — Young low rank approximation theorem      5—11
ED (Euclidean domain)      23—2
ED-RCF (elementarydivisors rational canonical form) matrix      6—8 to 6—9
EDD (elementary divisor domain)      23—2
Edge cut      36—3
Edges, digraphs      29—1
Edges, Euclidean simplexes      66—7
Edges, graphs      28—1 28—4
Effects of reordering      40—14 to 40—18
Efficacy, methods comparison      42—21
Efficiency, error analysis      37—16 to 37—17
egn, Mathematica software      73—21
egns, Mathematica software      73—20
eig command, Matlab software, eigenvalues      15—5
eig command, Matlab software, fundamentals      71—9 71—17 71—18
eig command, Matlab software, implicitly restarted Arnoldi method      44—1
eig command, Matlab software, Lanczos methods      42—21
EigenConditionNumbers, Maple software      72—15
Eigenpairs, eigenvalue problems      15—10
Eigenpairs, matrix perturbation theory      15—1
Eigenproblems, max-plus algebra      25—6 to 25—8
Eigenproblems, nonsymmetric, LAPACK subroutine package      75—17 to 75—20
Eigensharp characteristic      30—8
Eigenspaces, eigenvalues and eigenvectors      4—6
Eigenspaces, max-plus eigenproblem      25—6
Eigenspaces, nonnegative and stochastic matrices      9—2
Eigensystem, Mathematica software      73—14 73—15 73—16
Eigentriplets, eigenvalue problems      15—9 to 15—10
Eigentriplets, matrix perturbation theory      15—1
Eigenvalue decomposition (EVD)      42—2
Eigenvalues and eigenvectors, adjacency matrix      28—5
Eigenvalues and eigenvectors, canonical forms      6—2 to 6—3
Eigenvalues and eigenvectors, cone invariant departure, matrices      26—3 to 26—5
Eigenvalues and eigenvectors, fundamentals      4—6 to 4—11
Eigenvalues and eigenvectors, generalized eigenvalue problem      43—1 to 43—3
Eigenvalues and eigenvectors, graphs      28—5 to 28—7
Eigenvalues and eigenvectors, Hermitian matrices      17—13 to 17—14
Eigenvalues and eigenvectors, inequalities      17—9 to 17—10
Eigenvalues and eigenvectors, LAPACK subroutine package      75—9 to 75—11 75—11
Eigenvalues and eigenvectors, large-scale matrix computations      49—12
Eigenvalues and eigenvectors, Maple software      72—11 to 72—12
Eigenvalues and eigenvectors, Mathematica software      73—14 to 73—16
Eigenvalues and eigenvectors, Matlab software      71—9
Eigenvalues and eigenvectors, matrix equalities and inequalities      14—1 to 14—5 14—8
Eigenvalues and eigenvectors, multiplicity lists      34—7 to 34—8
Eigenvalues and eigenvectors, numerical stability and instability      37—20
Eigenvalues and eigenvectors, pseudoeigenvalues and pseudo-eigenvectors      16—1
Eigenvalues and eigenvectors, reducible matrices      9—8 to 9—9 9—11
Eigenvalues and eigenvectors, Schrodinger’s equation      59—7
Eigenvalues and eigenvectors, sign-pattern matrices      33—9 to 33—11
Eigenvalues and eigenvectors, singular values and singular value inequalities      17—13 to 17—14
Eigenvalues and eigenvectors, sparse eigenvalue solvers, software      77—2
Eigenvalues and eigenvectors, spectrum and boundary points      18—3
Eigenvalues, high relative accuracy, accurate SVD      46—2 to 46—5 46—7
Eigenvalues, high relative accuracy, fundamentals      46—1 to 46—2
Eigenvalues, high relative accuracy, one-sided Jacobi SVD algorithm      46—2 to 46—5
Eigenvalues, high relative accuracy, positive definite matrices      46—10 to 46—14
Eigenvalues, high relative accuracy, preconditioned Jacobi SVD algorithm      46—5 to 46—7
Eigenvalues, high relative accuracy, rank revealing decomposition      46—7 to 46—10
Eigenvalues, high relative accuracy, structured matrices      46—7 to 46—10
Eigenvalues, high relative accuracy, symmetric indefinite matrices      46—14 to 46—16
Eigenvalues, Maple      72—11 72—12 72—14
Eigenvalues, Maple software      72—15
Eigenvalues, Mathematica software, eigenvalues      73—14 73—15
Eigenvalues, Mathematica software, fundamentals      73—27
Eigenvalues, Mathematica software, singular values      73—17
Eigenvalues, numerical methods, high relative accuracy computation      46—1 to 46—16
Eigenvalues, numerical methods, implicitly restarted Arnoldi method      44—1 to 44—12
Eigenvalues, numerical methods, iterative solution methods      41—1 to 41—17
Eigenvalues, numerical methods, singular value decomposition      45—1 to 45—12
Eigenvalues, numerical methods, symmetric matrix techniques      42—1 to 42—22
Eigenvalues, numerical methods, unsymmetric matrix techniques      43—1 to 43—11
Eigenvalues, problems, generalized      15—9 to 15—11
Eigenvalues, problems, perturbation theory      15—1 to 15—6 15—9
Eigenvalues, problems, relative perturbation theory      15—13 to 15—15
Eigenvalues, symmetric matrix techniques, bisection method      42—14 to 42—15
Eigenvalues, symmetric matrix techniques, comparison ofmethods      42—21 to 42—22
Eigenvalues, symmetric matrix techniques, divide and conquer method      42—12 to 42—14
Eigenvalues, symmetric matrix techniques, fundamentals      42—1 to 42—2
Eigenvalues, symmetric matrix techniques, implicitly shifted QR method      42—9 to 42—11
Eigenvalues, symmetric matrix techniques, inverse iteration      42—14 to 42—15
Eigenvalues, symmetric matrix techniques, Jacobi method      42—17 to 42—19
Eigenvalues, symmetric matrix techniques, Lanczos method      42—19 to 42—21
Eigenvalues, symmetric matrix techniques, method comparison      42—21 to 42—22
Eigenvalues, symmetric matrix techniques, methods      42—2 to 42—5
Eigenvalues, symmetric matrix techniques, multiple relatively robust representations      42—15 to 42—17
Eigenvalues, symmetric matrix techniques, tridiagonalization      42—5 to 42—9
Eigenvalues, unsymmetric matrix techniques, dense matrix techniques      43—3 to 43—9
Eigenvalues, unsymmetric matrix techniques, fundamentals      43—1
Eigenvalues, unsymmetric matrix techniques, generalized eigenvalue problem      43—1 to 43—3
Eigenvalues, unsymmetric matrix techniques, sparse matrix techniques      43—9 to 43—11
Eigenvectors, Maple software      72—11
Eigenvectors, Mathematica software      73—14
EIGS subroutine package      76—9 to 76—10
eigshow command, Matlab software      71—9
eigtool, Matlab software      16—12 71—20
Eijkhout, Victor      74—1 to 74—7 77—1
Electron density distribution function      60—7
Electrostatics      59—11
Element of volume      13—25
Element, Mathematica software      73—24
Elementary analytic results      26—12 to 26—13
Elementary bidiagonal matrices      21—5
Elementary column operations      6—11
Elementary divisors      6—8 to 6—11
Elementary divisors rational canonical form (ED-RCF) matrix      6—8 to 6—9
Elementary matrices      1—12
Elementary row operations, Gaussian and Gauss-Jordan elimination      1—7
Elementary row operations, matrix equivalence      23—5
Elementary row operations, Smith normal form      6—11
Elementary symmetric function      P—2 to P—3
Elementarydivisor domain (EDD)      23—2
Eliminate, Mathematica software      73—20 73—23
Elimination graph      40—11
Elimination ordering      40—14
Elimination sequence      40—14
ELMAT directory, Matlab software      71—5
Elsner theorem      15—2
Embedding graphs      28—3
Embree, Mark      16—1 to 16—15
Empty graphs      28—2
Empty matrix      68—3
Encoder, coding theory      61—1
Encoder, linear block codes      61—3
Encoding      61—2
Endpoint      28—1
Energy norm      37—2
Entry weakly sign symmetric P-, $P_{0, 1}-$ and $P_{0}$-matrices      35—19 to 35—20
Entry, matrices      1—3
Entrysign symmetric P-, $P_{0, 1}-$ and $P_{0}$-matrices      35—19 to 35—20
Envelope method      40—16
Envelope, reordering effect      40—14
Epsilon-pseudospectrum, square matrix      71—20
eqns, Mathematica software      73—20
Equal matrices      1—3
Equalities and inequalities, matrices, determinantal relations      14—10 to 14—12
Equalities and inequalities, matrices, eigenvalues      14—1 to 14—5 14—8
Equalities and inequalities, matrices, inversions      14—15 to 14—17
Equalities and inequalities, matrices, nullity      14—12 to 14—15
Equalities and inequalities, matrices, rank      14—12 to 14—15
Equalities and inequalities, matrices, singular values      14—8 to 14—10
Equalities and inequalities, matrices, spectrum localization      14—5 to 14—8
Equality-constrained least squares problems      75—6 to 75—7
Equation solving, Maple software      72—9 to 72—11
Equations of motion      59—3
Equicorrelation matrix and structure      52—9
Equilibrium, linear dynamical systems      56—5
Equilibrium, matrix games      50—18
Equivalence class modulo      25—10
Equivalence relation      P—3
Equivalence, bilinear forms      12—2
Equivalence, group representations      68—1
Equivalence, Hermitian forms      12—8
Equivalence, linear block codes      61—3
Equivalence, linear dynamical systems      56—5
Equivalence, linear independence, span, and bases      2—7
Equivalence, matrix equivalence      23—5
Equivalence, matrix representations      68—3
Equivalence, scaling nonnegative matrices      9—20
Equivalence, sesquilinear forms      12—6
Equivalence, systems oflinear equations      1—9
Equivalence, trees      34—8
Equivalence, vector norms      37—3
Ergodic class matrices      9—15
Ergodic flow      56—14
Ergodicity coefficient, bounds      9—5
Ergodicity coefficient, irreducible matrices      9—5
Ergodicity coefficient, nonnegative and stochastic matrices      9—2
Ergodicity coefficient, reducible matrices      9—10 to 9—11
Error analysis, algorithms      37—16 to 37—17
Error analysis, conditioning and condition numbers      37—7 to 37—9
Error analysis, efficiency      37—16 to 37—17
Error analysis, floating point numbers      37—11 to 37—16
Error analysis, fundamentals      37—1 to 37—2
Error analysis, linear systems conditioning      37—9 to 37—11
Error analysis, matrix norms      37—4 to 37—6
Error analysis, numerical stability and instability      37—18 to 37—21
Error analysis, vector norms      37—2 to 37—3
Error analysis, vector seminorms      37—3 to 37—4
Errors, estimation      41—16 to 41—17
Errors, Krylov subspaces and preconditioners      41—2
Errors, linear prediction      64—7
Errors, LTI systems      57—14
Errors, protection, coding theory      61—1
Errors, vectors      61—2
ESPRIT algorithm      64—17
Estimated principal components      53—5
Estimation error      57—14
Estimation of state      57—11 to 57—13
Estimation, correlations and variates      53—7 to 53—8
Estimation, least squares      53—11 to 53—12
Euclidean algorithm      6—11
Euclidean distance matrices      35—9 to 35—10
Euclidean Distance Matrix      51—9
Euclidean distance, Euclidean point space      66—2
Euclidean distance, metric multidimensional scaling      53—14
Euclidean domain (ED), certain integral domains      23—2
Euclidean domain (ED), matrix equivalence      23—6
Euclidean domain (ED), matrix similarity      24—2
Euclidean geometry, fundamentals      66—1
Euclidean geometry, Gram matrices      66—5 to 66—7
Euclidean geometry, point spaces      66—1 to 66—5
Euclidean geometry, resistive electrical networks      66—13 to 66—15
Euclidean geometry, simplexes      66—7 to 66—13
Euclidean norm, matrix norms      37—4
Euclidean norm, one-sided Jacobi SVD algorithm      46—4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå