Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Euclidean norm, preconditioned Jacobi SVD algorithm        46—6   46—7    
Euclidean norm, rank revealing decompositions       46—8    
Euclidean norm, symmetric indefinite matrices       46—14    
Euclidean norm, vector norms       37—2    
Euclidean Parallel Postulate, Generalized        65—3    
Euclidean properties, matrices       53—14    
Euclidean properties, plane       65—4    
Euclidean properties, point space       66—1 to 66—5    
Euclidean properties, projective spaces       65—9    
Euclidean properties, simplexes       66—7 to 66—10    
Euclidean properties, unitary similarity        7—2    
Euclidean spaces, Gram matrices        66—5    
Euclidean spaces, inner product spaces       5—2    
Euclidean spaces, orthogonality       5—5    
Euclidean spaces, semisimple and simple algebras       70—4    
Euclidean spaces, vector spaces       1—3    
Euclid’s algorithm, certain integral domains       23—2    
Euclid’s algorithm, matrix equivalence       23—7    
Evaluation, permanents       31—11 to 31—12    
EVD (eigenvalue decomposition)        42—2    
Even cycle        33—2    
Exact breakdown       49—8    
Exact numerical cancellation       40—4    
Exact shifts        44—6    
Exactly universal quantum gates       62—7    
Exceptional, Jordan algebra, Jordan algebras       69—12    
Exceptional, Jordan algebra, nonassociative algebra       69—3    
Exogenous input       57—14    
exp command, Matlab software       71—19    
Expand, Mathematica software        73—25    
Expanders, graph parameters       28—9    
Expansion, Bezout domains       23—9    
Expansion, determinants        4—1 to 4—2    
Expansion, reducible matrices       9—8   9—11    
Expectation       52—2   52—3    
Expected value, random vectors       52—3    
Expected value, Schrodinger’s equation        59—7    
Expected value, state estimation       57—12    
Expected value, statistics and random variables       52—2    
Explicit QR iteration       43—4 to 43—5    
Explicit restarting       44—6    
expm function, Matlab software       11—11    
Exponent of matrix multiplication complexity        47—2    
Exponential stability, linear differential equations       56—3    
Exponential stability, linear differential-algebraic equations       55—14    
Exponential stability, linear ordinary differential equations       55—10    
Exponentials       56—2    
Exponents, floating point numbers       37—11    
Exponents, linear skew product flows        56—11    
Exponents, primitive digraphs and matrices        29—9    
expr, Mathematica software       73—26    
Extended colored graphs       66—10    
Extended graphs       66—10    
Extended precision        37—13    
Extended Tam — Schneider condition        26—7    
Extendible characters       68—9    
Extensions, pseudospectra       16—12 to 16—15    
Extensions, sign solvability       33—5    
Exterior algebra       70—2    
Exterior point method       50—23    
Exterior power       13—12    
Exterior product       13—13    
External direct sum, direct sum decompositions       2—5    
External direct sum, nonassociative algebra       69—3    
External product       13—25    
Extremal generators       25—12    
Extreme pathways       60—10    
Extreme point       50—13    
Extreme ray, flux balancing equation       60—10    
Extreme ray, linear independence and rank       25—12    
extreme values        27—7    
Extreme vectors        26—2    
ezcontour command, Matlab software        71—15    
ezplot command, Matlab software        71—14   71—14   71—17    
ezsurf command, Matlab software       71—17    
F-distribution       53—10    
F-ratio       53—3    
Faber and Manteuffel theorem       41—8    
Face, Collatz — Wielandt sets       26—5    
Face, Euclidean simplexes       66—7    
Face, geometry       51—5    
Face, Perron — Frobenius theorem        26—2    
Face, reducible matrices       26—8    
Facially exposed face       51—5    
Factorizations       see «QR factorization»    
Factorizations, Arnoldi factorization       44—2 to 44—4    
Factorizations, bipartite graphs       30—8 to 30—10    
Factorizations, direct solution oflinear solutions, fundamentals       38—1    
Factorizations, direct solution oflinear solutions, Gauss elimination       38—7 to 38—12    
Factorizations, direct solution oflinear solutions, LU decomposition       38—7 to 38—12    
Factorizations, direct solution oflinear solutions, orthogonalization        38—13 to 38—15    
Factorizations, direct solution oflinear solutions, perturbations       38—2 to 38—5    
Factorizations, direct solution oflinear solutions, QR decomposition        38—13 to 38—15    
Factorizations, direct solution oflinear solutions, symmetric factorizations        38—15 to 38—17    
Factorizations, direct solution oflinear solutions, triangular linear systems       38—5 to 38—7    
Factorizations, function computation methods       11—9 to 11—10    
Factorizations, information retrieval       63—5 to 63—8    
Factorizations, LU factorizations       1—13    
Factorizations, nonnegative matrix factorization       63—5 to 63—8    
Factorizations, orthogonal, least squares solutions       39—5 to 39—6    
Factorizations, sparse matrix methods        40—4 to 40—10    
Factorizations, total positive and total negative matrices        21—5 to 21—6    
Faithful characteristics, characters       68—5    
Faithful characteristics, group representations       68—2    
Faithful characteristics, matrix representations       68—3    
Fallat, Shaun M.       21—1 to 21—12    
Fast algorithms       47—2 to 47—4   see    
Fast Fourier transform (FFT)       58—17 to 58—20   60—8    
Fast large-scale matrix computations       49—2    
Fast matrix inversion       47—9 to 47—10    
Fast matrix multiplication, advanced techniques        47—7 to 47—9    
Fast matrix multiplication, algorithms       47—2 to 47—5    
Fast matrix multiplication, applications       47—9 to 47—10    
Fast matrix multiplication, approximation algorithms       47—6 to 47—7    
Fast matrix multiplication, fundamentals       47—1 to 47—2    
Feasible region        50—1    
Feasible solutions       50—1    
Feasible values       50—1    
Feedback controller        57—13    
Fejer’s theorem       8—10    
Fekete’s Criterion       21—7    
fermions       59—10    
FFT       see «Fast Fourier transform (FFT)»    
Fiedler vectors       36—1   36—4   36—7    
Fiedler, Miroslav       66—1 to 66—15    
Field ofrelational functions       23—2    
Field ofvalues, convergence rates        41—16    
Field ofvalues, numerical range        18—1    
Fields        P—3    
Fill element       40—4    
Fill graphs        40—14    
Fill matrix        40—4    
Fill-in, sparse matrix factorizations       49—3    
Filter polynomial       44—6    
Final class        54—5    
Final subset       9—2    
Fine, Morse decomposition       56—7    
Finite dimensional, direct sum decompositions       2—5    
Finite dimensional, nonassociative algebra       69—2    
Finite dimensional, vector space       2—3    
Finite energy       64—2    
Finite impulse response (FIR), adaptive filtering       64—12    
Finite impulse response (FIR), signal processing       64—2   64—3    
Finite impulse response (FIR), Wiener filter        64—11    
Finite Markov chain       54—2    
Finite Markov chains       54—9 to 54—11    
Finite power        64—5    
Finite precision arithmetic       41—16 to 41—17    
Finite time exponential growth rate       56—16    
Finitely generated elements, Bezout domains       23—8    
Finitely generated elements, max-plus algebra       25—2    
Finitely generated ideals       23—2    
FIR (finite impulse response), adaptive filtering       64—12    
FIR (finite impulse response), signal processing        64—2   64—3    
FIR (finite impulse response), Wiener filter       64—11    
FIR Wiener filtering problem       64—10    
First (population) canonical correlations and variates       53—7    
First level radix 2 FFT       58—17 to 58—18    
First, Mathematica software, matrices manipulation        73—13    
First, Mathematica software, singular values        73—18    
First, Mathematica software, vectors        73—3    
Fischer’s Determinantal Inequality        8—10    
Fischer’s inequality        14—11    
Fixed point, linear dynamical systems       56—5    
Fixed point, linearization       56—19    
Fixed spaces       3—6    
Flag manifolds       56—7   56—9    
Flatten, Mathematica software, fundamentals       73—27    
Flatten, Mathematica software, linear programming       73—24    
Flatten, Mathematica software, matrices manipulation       73—14    
Flexible algebra        69—10    
Flip map        22—2    
Floating point numbers       37—11 to 37—16    
Floating point operation (flop), algorithms and efficiency        37—16    
Floating point operation (flop), large-scale matrix computations       49—2    
Floquet exponents        56—17    
Floquet theory, dynamical systems        56—12 to 56—14    
Floquet theory, random linear dynamical systems       56—15 to 56—16    
Flow lattice       30—2    
Flux balancing equation       60—10 to 60—13    
fname command, Matlab software       71—10   71—11    
FOM (Full Orthogonalization Method)       41—7    
for loops, Matlab software       71—11    
Ford-Fulkerson theorem       27—7    
Forest, graphs       28—2    
format short command, Matlab software       71—8    
Formed space        67—5    
Formulating linear programs        50—3 to 50—7    
Formulation        50—3 to 50—7    
Forward errors        37—18   37—20    
Forward stability       37—18    
Four (4)-cockades       30—4    
Fourier analysis, discrete theory        58—8 to 58—17    
Fourier analysis, fast Fourier transform       58—17 to 58—20    
Fourier analysis, function/functional theory       58—2 to 58—8   58—12    
Fourier analysis, fundamentals       58—1    
Fourier coefficients       5—4    
Fourier expansion       5—4    
Fourier transforms, Green’s functions        59—10    
Fourier transforms, Karle — Hauptman matrix        60—8    
Frame       56—9    
Frameticks, Mathematica software        73—27    
Free algebras        69—18    
Free distance        61—12    
Free Lie algebra        70—2    
Free variables        1—10    
Freeware (software)        77—1 to 77—3    
Frequency response        64—2    
Frequency-domain analysis        57—5 to 57—6    
Freund, Roland W.        49—1 to 49—15    
Friedland, Shmuel        23—1 to 23—10   24—1    
Friendship theorem        28—7    
Frobenius inequality        14—13    
Frobenius norm, eigenvalues        15—4    
Frobenius norm, elementary analytic results        26—12    
Frobenius norm, irreducible matrices        29—7    
Frobenius norm, matrices function behavior        16—10    
Frobenius norm, matrix norms        37—4    
Frobenius norm, protein structure comparison        60—4    
Frobenius norm, semidefinite programming        51—3    
Frobenius norm, singular value decomposition        5—11    
Frobenius norm, square matrices        27—6   29—11    
Frobenius norm, unitarily invariant norms        17—6    
Frobenius norm, unitary similarity        7—2    
Frobenius norm, weak combinatorial invariants        27—6    
Frobenius normal form        27—5    
Frobenius reciprocity        68—9   68—10    
Frobenius — Konigh theorem        27—4    
Frobenius-Victory theorem        26—8   26—9    
Front end, Mathematica software        73—1    
Frontal/multifrontal methods        40—10    
Frucht — Kantorovich Inequality        52—10    
Full cones        8—10    
Full level radix 2 FFT       58—18 to 58—19    
Full Orthogonalization Method (FOM)        41—7    
Full rank least squares problem        5—14    
Full reorthogonalization procedure        42—20 to 42—21    
Full-rank model        52—8    
Fully indecomposable        27—3 to 27—4    
Fulton studies        17—13    
Function evaluation operator        62—5 to 62—6    
Function/functional theory        58—2 to 58—8   58—12    
Functional inequalities, irreducible matrices        9—5    
Functional inequalities, reducible matrices        9—10    
Functions of matrices, computational methods        11—9 to 11—12    
Functions of matrices, cosine        11—7 to 11—8    
Functions of matrices, exponential        11—5 to 11—6    
Functions of matrices, fundamentals        11—1    
Functions of matrices, logarithm        11—6 to 11—7    
Functions of matrices, sign function        11—8    
Functions of matrices, sine        11—7 to 11—8    
Functions of matrices, square root        11—4 to 11—5    
Functions of matrices, theory        11—1 to 11—4    
Functions, Matlab software        71—11    
Fundamental period        58—2    
Fundamental subspaces        39—4    
Fundamental tensor        13—25    
Gale — Ryser Theorem        27—7    
Galerkin condition, Arnoldi factorization        44—3    
Galerkin condition, Krylov subspace projection        44—2    
gallery command, Matlab software        71—5    
Gantmacher studies        19—4    
Gantmacher-Lyapunov theorem        26—14    
Gaubert, Stephane        25—1 to 25—14    
Gauss multipliers        38—7    
Gauss transformations, Gauss elimination        38—7    
Gauss transformations, sparse matrix factorizations        40—4    
Gauss vectors        38—7    
Gauss — Jordan elimination        1—7 to 1—9    
Gauss — Markov model, least squares estimation        53—11    
Gauss — Markov model, linear statistical models        52—8    
Gauss — Markov theorem        52—11    
Gauss — Newton method        51—8    
Gauss — Seidel algorithm        41—14    
Gauss — Seidel methods        41—3 to 41—4    
Gaussian elimination        see «LU factorizations»    
Gaussian elimination, algorithm efficiency        37—17    
Gaussian elimination, bipartite graphs        30—7    
Gaussian elimination, bisection and inverse iteration        42—15    
Gaussian elimination, direct solution of linear systems        38—7 to 38—12    
Gaussian elimination, fundamentals        1—7 to 1—9    
Gaussian elimination, Karle — Hauptman matrix        60—8    
Gaussian elimination, modeling and analyzing fill        40—10    
Gaussian elimination, numerical stability and instability        37—20   37—21    
Gaussian elimination, reordering effect        40—16   40—18    
Gaussian elimination, sparse matrix factorizations        40—5   40—9    
Gaussian Network Model        60—10    
Gaussian properties        8—9    
GCDD (greatest common divisor domain)        23—2    
GEBAL LAPACK subroutine        43—3    
General Inverse Eigenvalue Problem (GIEP)        34—8    
General linear group, group representations        68—1    
General linear group, matrix group        67—1    
General Schur Theorem        43—2    
Generalized cycle products        29—5 to 29—6    
Generalized cycle, digraphs        29—2    
Generalized eigenvalue problem        43—1 to 43—3    
Generalized eigenvalues and eigenvectors        59—7    
Generalized Euclidean Parallel Postulate        65—3    
Generalized inverse        52—4    
                            
                     
                  
			 
		          
			Ðåêëàìà