Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Restarting process        44—4 to 44—5    
Restricted subspace dimensions        44—10    
Retrieved documents        63—2    
Reverse communication        76—2    
Reverse, Mathematica software        73—27    
rhs, Mathematica software        73—20    
Riccatti equation        51—9    
Ridge aggression        39—9    
Rigal — Gaches theorem        38—3    
Right alternative algebras        69—10   69—14    
Right alternative identities        69—2    
Right deflating subspaces        55—7    
Right divide operator, Matlab software        71—7    
Right Kronecker indices        55—7    
Right Krylov subspace, Arnoldi process        49—10    
Right Krylov subspace, nonsymmetric Lanczos process        49—8    
Right Lanczos vectors        49—8    
Right Moufang identity        69—10    
Right multiplication operators        69—5    
Right nilpotency        69—14    
Right preconditioning        41—3    
Right reducing subspaces        55—7    
Right simplexes        66—10    
Right singular space        45—1    
Right singular vectors        45—1    
Right-looking methods        40—10    
Rigid motion        65—4    
Ring        P—6    
Ring automorphism        22—7    
Ritz pairs, Arnoldi factorization        44—3    
Ritz pairs, spare matrices        43—10    
Ritz values, implicit restarting        44—8    
Ritz values, Krylov subspace projection        44—2    
Ritz values, spare matrices        43—10    
Ritz vectors, Krylov subspace projection        44—2    
Ritz vectors, polynomial restarting        44—6    
Ritz vectors, spare matrices        43—10    
RLS (recursive least squares)        64—12    
RMSD (root-mean-square deviation)        60—4 to 60—7    
Robinson, J.        50—24    
Robust linear systems, dynamical systems        56—16 to 56—19    
Robust linear systems, linear skew product flows        56—12    
Robust representations        42—15 to 42—17    
Romani, R.        47—8    
Rook numbers        31—10    
Rook polynomials        31—10 to 31—11    
Root space        70—4    
Root system        70—4    
Root, positive definite matrices        8—6    
Root-mean-square deviation (RMSD)        60—4 to 60—7    
RootOf, Maple software        72—11   72—20    
roots function, Matlab software        72—16    
Rosenthal, Joachim        61—1 to 61—13    
Rosette        29—13    
RotateLeft, Mathematica software        73—13    
RotateRight, Mathematica software        73—13    
Rotation group, representations        59—9 to 59—10    
Rotation matrix        65—5    
Rothblum index theorem        26—8   26—10    
Rothblum, Uriel G.        9—1 to 9—23    
Round-robin tournament        27—9    
Round-to-nearest standard        37—12    
Rounding error bounds        37—14    
Rounding errors        37—12   see    
Rounding mode        37—12    
Routh — Hurwitz matrices, stability        19—3    
Routh — Hurwitz matrices, totally positive and negative matrices        21—3 to 21—4    
Routh-Hurwitz StabilityCriterion        19—4    
Row cyclic pivoting strategy        42—18    
Row echelon form (REF)        1—7    
Row-cyclic pivoting strategy        42—18    
Row-echelon form        38—7    
Row-stochastic matrices        9—15    
RowReduce, Mathematica software, linear systems        73—20   73—23    
RowReduce, Mathematica software, matrix algebra        73—10   73—12    
Rows, balanced signing        33—5    
Rows, equivalence        1—7   23—5    
Rows, feasibility        50—8    
Rows, indices        23—9    
Rows, matrices        1—3    
Rows, pivoting        46—5    
Rows, rank        25—13    
Rows, row-major format        74—2    
Rows, scaling        9—20    
Rows, sign solvability        33—5    
Rows, spaces        2—6    
Rows, sum vectors        27—7    
Rows, vectors        1—3    
Roy’s maximum root statistic        53—13    
RRD        see «Rank revealing decomposition (RRD)»    
RREF        see «Reduced row echelon form (RREF)»    
rref command, Matlab software        71—17    
RRQR (rank revealing QR) decomposition        39—11    
Ruskeepaa, Heikki        73—1 to 73—27    
Ryser/Nijenhius/Wilf (RNW) algorithm        31—12    
S-matrices, sign-pattern matrices        33—5 to 33—7    
Sabinin algebra        69—16 to 69—17    
Saddle point        50—18    
Sadun, Lorenzo        59—1 to 59—11    
Saiago, Carlos M.        34—1 to 34—15    
Sample canonical correlations and variates        53—8    
Sample correlation coefficient        52—9    
Sample covariance matrix        53—8    
Sample mean        53—4    
Sample points        52—2    
Sample principal components        53—5    
Sample spaces        52—2    
Samples, statistics and random variables        52—2    
Sampling, functional and discrete theories        58—12    
Sandwich theorem        28—10    
SAP (spectrally arbitrary pattern)        33—11    
Saturation digraphs        25—6   25—7    
Scalar matrix        1—4    
Scalar multiple, vector spaces        3—2    
Scalar multiplication, matrices        1—3    
Scalar multiplication, vector spaces        1—1    
Scalar transformation        3—2    
Scaled sampling        58—12    
Scaling, doubly stochastic matrices        27—10    
Scaling, nonnegative matrices        9—20 to 9—23    
Schatten-p norms        17—5    
Schein rank        25—13    
Schlaefli simplexes        66—10   66—11   66—12    
Schneider, Barker and, studies        26—3    
Schneider, Hans        26—1 to 26—14    
Schneider’s theorem        14—3    
Schoenberg characteristics        66—8    
Schoenberg transform        35—10    
Schoenberg’s variation diminishing property        21—10    
Schonhage, A.        47—8    
Schrodinger’s equation        59—2   59—6    
Schur algorithm        64—8    
Schur complements, bipartite graphs        30—6 to 30—7    
Schur complements, determinants        4—3   4—4   4—5    
Schur complements, inverse identities        14—15    
Schur complements, partitioned matrices        10—6 to 10—8    
Schur complements, random vectors        52—4   52—5    
Schur complements, symmetric indefinite matrices        46—16    
Schur decomposition, function computation methods        11—11    
Schur decomposition, implicit restarting        44—6    
Schur decomposition, pseudospectra        16—3    
Schur properties, basis        44—6    
Schur properties, form        16—11    
Schur properties, inequalities        14—2   68—11    
Schur properties, linear prediction        64—8    
Schur properties, product        8—9    
Schur properties, relations        68—4    
Schur properties, spectral estimation        64—15    
Schur — Horn theorem        20—1 to 20—2    
SchurDecomposition, Mathematica software        73—19    
Schur’s lemma        68—2    
Schur’s theorem, eigenvalue problem        43—2    
Schur’s theorem, unitary similarity        7—5    
Schur’s Triangularization theorem        10—5    
Scilab’s Maxplus toolbox        25—6    
Score vector        27—9    
Scores, estimation        53—8    
SCT        see «Standard column tableau (SCT)»    
SDP        see «Semidefinite programming (SDP)»    
Search engines, Markov chains        54—4 to 54—5   see    
Seber, George A.F.        53—1 to 53—14    
Second canonical correlations and variates        53—7    
Segment, Euclidean point space        66—2    
Seidel matrix        28—8    
Seidel switching, graphs        28—9    
Seidel switching, matrix representations        28—8    
Self-adjoints, Hermitian matrices        8—1    
Self-adjoints, linear operators        5—5    
Self-adjoints, Schrodinger’s equation        59—7    
Self-dual code        61—3    
Self-inverse sign pattern        33—3    
Self-polar cone        51—5    
Semantic indexing, latent        63—3 to 63—5    
Semiaffine characteristics        65—2    
Semicolon, Maple software        72—2    
Semiconvergence, numerical methods        54—12    
Semiconvergence, reducible matrices        9—8   9—11    
Semidefinite programming (SDP), applications        51—9 to 51—11    
Semidefinite programming (SDP), constraint qualification        51—7    
Semidefinite programming (SDP), duality        51—5 to 51—7    
Semidefinite programming (SDP), fundamentals        51—1 to 51—3    
Semidefinite programming (SDP), geometry        51—5    
Semidefinite programming (SDP), notation        51—3 to 51—5    
Semidefinite programming (SDP), optimality conditions        51—5 to 51—7    
Semidefinite programming (SDP), primal-dual interior point algorithm        51—8 to 51—9    
Semidefinite programming (SDP), results        51—3 to 51—5    
Semidefinite programming (SDP), strong duality        51—7    
Semidistinguished face        26—8    
Semimodules        25—2    
Semipositive basis        26—8    
Semipositive Jordan basis        26—8    
Semipositive Jordan chain        26—8    
Semipositives, fundamentals        9—2    
Semipositives, Perron — Frobenius theorem        26—2    
Semisimple algebras, general properties        69—4   69—5    
Semisimple algebras, Lie algebras        70—3 to 70—7    
Semisimple eigenvalues        4—6    
Semistable matrices        19—9    
Semrl, Peter        22—1 to 22—8    
Sensitivity, least squares solutions        39—7 to 39—8    
Sensitivity, linear programming        50—17 to 50—18    
Separation theorem        25—11    
Separation, alternative algebras        69—10    
Separation, eigenvalue problems        15—2    
Separator, reordering effect        40—16    
Sesquilinear forms        12—1   12—6    
Sets, nonnegative matrices        9—23    
Setting up linear programs        50—3 to 50—7    
Severin, Andrew        60—13    
SGEEV, driver routine        75—11 to 75—13    
SGELS driver routine        75—5 to 75—6    
SGESV driver routine        75—3 to 75—4    
SGESVD, driver routine        75—14 to 75—15    
SGGEV, driver routine        75—18 to 75—20    
SGGGLM, driver routine        75—8 to 75—9    
SGGLSE driver routine        75—7    
SGGSVD, driver routine        75—22 to 75—23    
Shader, Bryan L.        30—1 to 30—10    
Shannon capacity        28—9    
Shannon’s Coding theorem        61—3 to 61—4    
Shape, matrices        1—3    
Shapiro, Helene        7—1 to 7—9    
Sherman — Morrison        14—15    
Shestakov, Ivan P.        69—1 to 69—25    
Shift and invert spectral transformation mode, ARPACK        76—7    
Shift, symmetric matrix eigenvalue techniques        42—2    
Shifted matrices        42—2    
Shifted QR iteration        42—3    
Shifts, polynomial restarting        44—6    
Shor’s factorization algorithm, Grover’s search algorithm        62—17    
Shor’s factorization algorithm, quantum computation        62—6   62—17    
Show, Mathematica software        73—5    
SIGN        P—6    
Sign changes        21—9    
Sign function        11—12    
Sign nonsingularity, rank revealing decomposition        46—8    
Sign nonsingularity, sign-pattern matrices        33—3 to 33—5    
Sign pattern        30—4    
Sign pattern class, complex sign and ray patterns        33—14    
Sign pattern class, sign-pattern matrices        33—1    
Sign potentiallyorthogonality(SPO)        33—16    
Sign semistability        33—7    
Sign singularity, rank revealing decomposition        46—8    
Sign singularity, sign nonsingularity        33—3    
Sign solvability        33—5 to 33—7    
Sign stable        33—7    
Sign symmetric        19—3    
Sign-central patterns        33—17    
Sign-pattern matrices, allowing properties        33—9 to 33—11    
Sign-pattern matrices, complex sign patterns        33—14 to 33—15    
Sign-pattern matrices, eigenvalue characterizations        33—9 to 33—11    
Sign-pattern matrices, fundamentals        33—1 to 33—3    
Sign-pattern matrices, inertia, minimum rank        33—11 to 33—12    
Sign-pattern matrices, inverses        33—12 to 33—14    
Sign-pattern matrices, L-matrices        33—5 to 33—7    
Sign-pattern matrices, orthogonality        33—16 to 33—17    
Sign-pattern matrices, powers        33—15 to 33—16    
Sign-pattern matrices, ray patterns        33—14 to 33—16    
Sign-pattern matrices, S-matrices        33—5 to 33—7    
Sign-pattern matrices, sign nonsingularity        33—3 to 33—5    
Sign-pattern matrices, sign solvability        33—5 to 33—7    
Sign-pattern matrices, sign-central patterns        33—17    
Sign-pattern matrices, stability        33—7 to 33—9    
Signal model        64—16    
Signal processing, adaptive filtering        64—12 to 64—13    
Signal processing, arrival estimation direction        64—15 to 64—18    
Signal processing, fundamentals        64—1 to 64—4    
Signal processing, linear prediction        64—7 to 64—9    
Signal processing, random signals        64—4 to 64—7    
Signal processing, spectral estimation        64—14 to 64—15    
Signal processing, Wiener filtering        64—10 to 64—11    
Signal subspace        64—16    
Signature matrix, square case        32—2    
Signature pattern        33—2    
Signature similarity        33—2    
Signature, Hermitian forms        12—8    
Signature, symmetric bilinear forms        12—3    
Signed 4-cockade        30—4    
Signed bigraph        30—4    
Signed bipartite graph        30—1    
Signed digraphs        33—2    
Signed singular value decomposition        46—16    
Significand        37—11    
Signing        33—5    
Signless Laplacian matrix        28—7    
Similarity of matrix families, classification I        24—7 to 24—10    
Similarity of matrix families, classification II        24—10 to 24—11    
Similarity of matrix families, fundamentals        24—1 to 24—5    
Similarity of matrix families, property L        24—6 to 24—7    
Similarity of matrix families, simultaneous similarity        24—5 to 24—11    
Similarity, change of basis        3—4    
Similarity, linear independence, span, and bases        2—7    
Similarity, matrix similarities        24—1    
Similarity-scaling        9—20    
Simon’s problem        62—13 to 62—15    
Simple algebras, general properties        69—4    
Simple algebras, Lie algebras        70—3 to 70—7    
Simple cycles, matrix completion problems        35—2    
Simple cycles, sign-pattern matrices        33—2    
simple eigenvalues        4—6    
                            
                     
                  
			 
		          
			Ðåêëàìà