Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Hogben L. — Handbook of Linear Algebra
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Handbook of Linear Algebra
Àâòîð: Hogben L.
Àííîòàöèÿ: The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2006
Êîëè÷åñòâî ñòðàíèö: 1400
Äîáàâëåíà â êàòàëîã: 30.06.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Controlled-NOT gate, quantum computation 62—4
Controlled-NOT gate, universal quantum gates 62—8
Controller, LTI systems 57—13
Controlling random vectors 52—4
Convergence rates, CG 41—14 to 41—15
Convergence rates, GMRES 41—15 to 41—16
Convergence rates, MINRES 41—14 to 41—15
Convergence, implicitly restarted Arnoldi method 44—9 to 44—10
Convergence, nonnegative and stochastic matrices 9—2
Convergence, reducible matrices 9—8 9—11
Convergence, Toeplitz matrices 16—6
Convergent regular splitting 9—17
Convex hull 66—2
Convex linear combination 50—13
Convex polytopes 27—10 to 27—12
Convexity, affine spaces 65—2
Convexity, Euclidean point space 66—2
Convexity, fundamentals P—2
Convexity, phase 2 geometric interpretation 50—13
Convexity, vector norms 37—3
Convexity, vector seminorms 37—4
Convolution identities, discrete theory 58—10
Convolution identities, Fourier analysis 58—5
Convolution, Fourier analysis 58—3
Convolution, signal processing 64—2
Convolutional codes 61—11 to 61—13
Coordinate matrix 60—2
Coordinate vectors 60—2
Coordinates, change of basis 2—10 to 2—12
Coordinates, Euclidean point space 66—1
Coordinates, NMR protein structure determination 60—2
Coordinatization theorem 69—13
Copositive matrices 35—11 to 35—12
Coppersmith and Winograd studies 47—9
Coprime elements 23—2
Core 26—5 to 26—7
Corless, Robert M. 72—1 to 72—21
Corner minor 21—7 see
Corrected seminormal equations 39—6
Correlation coefficient 52—3
Correlation matrix, positive definite matrices 8—6
Correlation matrix, random vectors 52—4
Correlation, random vectors 52—3
Correlations and variates 53—7 to 53—8
Cosine and sine 11—11
Cospectral graphs 28—5
costs, Mathematica software 73—24
Coupling time 25—9
Courant — Fischer inequalities 14—4
Courant — Fischer theorem, eigenvalues 14—4
Courant — Fischer theorem, Hermitian matrices 8—3
Covariance matrix, positive definite matrices 8—9
Covariance matrix, random vectors 52—3
Covariance, random vectors 52—3
Cover, combinatorial matrix theory 27—2
Cramer’s Rule 4—3 37—17
Craven and Csordas studies 21—11 to 21—12
Critical digraphs 25—6 25—7 see
Critical vertices 25—6
Cross correlation 64—4
Cross, Mathematica software 73—3 73—5
Cross-covariance matrix 52—4
Cross-positives 26—13
CrossProduct, Maple software 72—3
CRS (compressed row storage) scheme 40—4
Csordas, Craven and, studies 21—11 to 21—12
Cubics, Mathematica software 73—14 73—15
Cui, Feng 60—13
Cumulative distribution function 52—2
Cut lattice 30—2
Cut space 30—2
Cut vertices 36—3
Cuthill — McKee algorithm 40—16
Cycle conditions 35—9
Cycle of length 28—1 28—2
Cycle products, digraphs 29—4 to 29—6
Cycle-clique 35—14
Cycles of length 33—2
Cycles, digraphs 29—2
Cycles, Jacobi method 42—18
Cycles, matrices 48—2
Cycles, pattern 33—9
Cycles, simplex method 50—12
Cycles, time 25—8
Cyclic code 61—6
Cyclic normal form, digraphs 29—9 to 29—11
Cyclic normal form, imprimitive matrices 29—10
Cyclic simplexes 66—12
Cyclically real ray pattern 33—14
Cyclicity theorem 25—8
Cyclicity, matrix power asymptotics 25—8
D-optimal matrices, balanced matrices 32—12
D-optimal matrices, fundamentals 32—1
D-optimal matrices, nonregular matrices 32—7 to 32—9
D-optimal matrices, nonsquare case 32—2 to 32—12
D-optimal matrices, regular matrices 32—5 to 32—7
D-optimal matrices, square case 32—2 to 32—4
D-stability 19—5 to 19—7
Damped least squares 39—9 to 39—10
Dangling node 63—11
Daniel studies 44—4
Data Encryption Standard (DES) cryptographysystem 62—17
Data fitting 39—3 to 39—4
Data matrix 53—2 to 53—3
Data perturbations 38—2
Datta, Biswa Nath 37—1 to 37—21
Davidson’s method 43—10
Day, Jane 1—1 to 1—15
DCT see «Discrete Fourier transform (DFT)»
de Oliveria studies 20—3
De Rijk’s row-cyclic pivoting 46—4
DeAlba, Luz M. 4—1 to 4—11
Decoder 61—2
Decoding 61—2
Decomposable tensors 13—3
Decomposition, direct solution of linear systems 38—7 to 38—15
Decomposition, high relative accuracy 46—7 to 46—10
Decomposition, least squares solutions 39—11 to 39—12
Decomposition, Mathematica software 73—18 to 73—19
Decomposition, matrix group 67—1
Decomposition, Morse, dynamical systems 56—7 to 56—9
Decomposition, rank revealing decomposition 39—11 to 39—12
Decomposition, semisimple and simple algebras 70—4
Decomposition, singular values 17—15
Decomposition, symmetric and Grassmann tensors 13—13
Decomposition, symmetric factorizations 38—15
Decomposition, tensors, multilinear algebra 13—7
Deconvolution, Fourier analysis 58—8
Deconvolution, functional and discrete theories 58—16
Decoupling Principle 59—1 59—2
Deeper properties 21—9 to 21—12
Defective matrices 4—6
Definite matrices see «Positive definite matrices (PSD)»
Definite pencils 15—10
Deflation 42—2
Degenerate characteristics, sesquilinear forms 12—6
Degenerate characteristics, simplex method 50—12
Degree, certain integral domains 23—2
Degree, characters 68—5
Degree, control theory 57—2
Degree, convolutional codes 61—11
Degree, frequency-domain analysis 57—6
Degree, general properties 69—5
Degree, graphs 28—2
Degree, group representations 68—1
Degree, matrix group 67—1
Degree, matrix representations 68—3
Degree, max-plus permanent 25—9
Deletion, edges and vertices 28—4
Delsarte’s Linear Programming Bound 28—12
Delta function 58—2
demand, Mathematica software 73—24
Demmel — Kahan singular value decomposition 45—7 to 45—8
Demmel, James 75—1 to 75—23
Denardo algorithm 25—8
Denman — Beavers iteration 11—11
Dense matrices, fundamentals 43—1
Dense matrices, large-scale matrix computations 49—2
Dense matrices, software 77—2
Dense matrices, techniques 43—3 to 43—9
Depth, Jordan canonical form 6—3
Derangements 31—6
Derivation, Lie algebras 70—1
Derived algebra 70—3
Derogatory matrices 4—6
DES (Data Encryption Standard) cryptography system 62—17
Desargues’ theorem 65—8 65—9
Design matrices, D-optimal matrices 32—1
Design matrices, linear statistical models 52—8
Design, square case 32—2
det command, Matlab software 71—17
det function, Matlab software 71—3
Det, Mathematica software 73—10 73—11
Detection, control theory 57—2
Determinant, Maple software 72—5
Determinantal region 33—14
Determinantal relations 14—10 to 14—12
Determinants, advanced results 4—3 to 4—6
Determinants, connections 31—12 to 31—13
Determinants, fast matrix multiplication 47—10
Determinants, fundamentals 4—1 to 4—3
Determinants, invariants 23—5
Deterministic Markov decision process 25—3
Deterministic spectral estimation 64—14
Deutsch-Jozsa problem 62—9 to 62—11
Deutsch’s problem 62—8 to 62—9
Developer’HessenbergDecomposition’, Mathematica software 73—27
DGEMM BLAS subroutine package 42—21
DGKS mechanism 44—4
Dhillon, Inderjit S. 45—1 to 45—12
diag, Mathematica software 73—16
Diagonal entry 1—4 23—5
Diagonal matrices 1—4
Diagonal pattern 33—2
Diagonal product 27—10
Diagonal stability 19—9
Diagonalization, eigenvalue problems 15—10
Diagonalization, eigenvalues and eigenvectors 4—6 4—7
Diagonally dominant matrices 9—17
Diagonally scaled representation 46—10
Diagonally scaled totally unimodular (DSTU) 46—8 46—9
DiagonalMatrix, Mathematica software, eigenvalues 73—15 73—16
DiagonalMatrix, Mathematica software, matrices 73—6 73—8
Diagonals, square matrices 27—3
Diameter, eigenvalues 34—7
Diao, Zijian 62—1 to 62—19
Dias da Silva, Jose A. 13—1 to 13—26
Differentiable functions 56—5
Differential equations, constant coefficients 55—1 to 55—5
Differential equations, eigenvalues and eigenvectors 4—10 to 4—11
Differential equations, linear different equations 55—1 to 55—5
Differential equations, linear differential-algebraic equations 55—7 to 55—10 55—14
Differential equations, linear ordinary differential equations 55—5 to 55—6 55—10
Differential equations, linearization 56—19
Differential equations, stability 55—10 to 55—16
Differential quotient-difference (dqds) step 45—8 to 45—9
Differential-algebraic equations 55—1
Differential-algebraic equations of order 55—2
Digits, Maple software 72—14
Digraphs, adjacency matrix 29—3 to 29—4
Digraphs, cycle products 29—4 to 29—6
Digraphs, cyclic normal form 29—9 to 29—11
Digraphs, directed graphs 29—3 to 29—4
Digraphs, fundamentals 29—1 to 29—3
Digraphs, irreducible matrices 29—6 to 29—8
Digraphs, irreducible, imprimitive matrices 29—9 to 29—11
Digraphs, matrices 29—3 to 29—4
Digraphs, matrix completion problems 35—2
Digraphs, max-plus algebra 25—2
Digraphs, minimal connection 29—12 to 29—13
Digraphs, modeling and analyzing fill 40—11
Digraphs, nearly reducible matrices 29—12 to 29—13
Digraphs, nonnegative and stochastic matrices 9—2
Digraphs, P-, and -matrices 35—15 to 35—16
Digraphs, primitive digraphs and matrices 29—8 to 29—9
Digraphs, sign-pattern matrices 33—2
Digraphs, strongly connected digraphs 29—6 to 29—8
Digraphs, walk products 29—4 to 29—5
Dihedral interior angle 66—7
Dilations, numerical range 18—9 to 18—10
Dimension reduction 49—14 to 49—15
Dimension theorem, kernel 3—5
Dimension theorem, matrix range 2—6 to 2—9
Dimension theorem, null space 2—6 to 2—9
Dimension theorem, range 3—5
Dimension theorem, rank 2—6 to 2—9
Dimension, doubly stochastic matrices 27—10
Dimension, Euclidean point space 66—2
Dimension, Euclidean simplexes 66—7
Dimension, grading 70—9
Dimension, nonassociative algebra 69—1
Dimension, simultaneous similarity 24—8
Dimension, vector space 2—3
Dimensional projective spaces and subspaces 65—6
Dimensions, Mathematica software 73—6 73—7 73—27
Dirac’s bra-ket notation 62—2
Direct isometry 65—5 see
Direct solution, linear systems, fundamentals 38—1
Direct solution, linear systems, Gauss elimination 38—7 to 38—12
Direct solution, linear systems, LU decomposition 38—7 to 38—12
Direct solution, linear systems, orthogonalization 38—13 to 38—15
Direct solution, linear systems, perturbations 38—2 to 38—5
Direct solution, linear systems, QR decomposition 38—13 to 38—15
Direct solution, linear systems, symmetric factorizations 38—15 to 38—17
Direct solution, linear systems, triangular linear systems 38—5 to 38—7
Direct sum, block diagonal and triangular matrices 10—4
Direct sum, decompositions 2—4 to 2—6
Direct sum, direct sum decompositions 2—5
Direct sum, group representations 68—3
Direct sum, nonassociative algebra 69—3
Direct sum, semisimple and simple algebras 70—3
Direct Toeplitz solvers 48—4 to 48—5
Directed arcs, digraphs 29—1
Directed bigraphs 30—4
Directed digraphs 29—1
Directed edges 29—1
Directed graphs 29—3 to 29—4
Directed multigraph 29—2
Direction space, affine spaces 65—2
Direction, arrival estimation 64—15 to 64—18
Directory structure and contents 76—3
Dirichlet conditions 59—10
Discrete approximation 58—13
Discrete event systems 25—3 to 25—4
Discrete Fourier transform (DFT) 58—9
Discrete invariants 24—11
Discrete stochastic process 54—1
Discrete theory 58—2 to 58—17
Discrete time Fourier transform 64—2
Discrete variables 52—2
Discrete Wiener filtering problem 64—10
Discriminant coordinates 53—6
Disjoint matrix multiplication 47—8
dispersion 21—7
Dispersion matrix 52—3
Dissection strategy 40—16
Dissimilarity 53—13
Dissimilarity matrix 53—14
Distance bounds 61—5 to 61—6
Distance matrix 60—2
Ðåêëàìà