Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Controlled-NOT gate, quantum computation        62—4    
Controlled-NOT gate, universal quantum gates        62—8    
Controller, LTI systems        57—13    
Controlling random vectors        52—4    
Convergence rates, CG        41—14 to 41—15    
Convergence rates, GMRES        41—15 to 41—16    
Convergence rates, MINRES        41—14 to 41—15    
Convergence, implicitly restarted Arnoldi method        44—9 to 44—10    
Convergence, nonnegative and stochastic matrices        9—2    
Convergence, reducible matrices        9—8   9—11    
Convergence, Toeplitz matrices        16—6    
Convergent regular splitting        9—17    
Convex hull        66—2    
Convex linear combination        50—13    
Convex polytopes        27—10 to 27—12    
Convexity, affine spaces        65—2    
Convexity, Euclidean point space        66—2    
Convexity, fundamentals        P—2    
Convexity, phase 2 geometric interpretation       50—13    
Convexity, vector norms        37—3    
Convexity, vector seminorms       37—4    
Convolution identities, discrete theory       58—10    
Convolution identities, Fourier analysis        58—5    
Convolution, Fourier analysis        58—3    
Convolution, signal processing        64—2    
Convolutional codes        61—11 to 61—13    
Coordinate matrix        60—2    
Coordinate vectors        60—2    
Coordinates, change of basis        2—10 to 2—12    
Coordinates, Euclidean point space        66—1    
Coordinates, NMR protein structure determination        60—2    
Coordinatization theorem       69—13    
Copositive matrices        35—11 to 35—12    
Coppersmith and Winograd studies       47—9    
Coprime elements       23—2    
Core        26—5 to 26—7    
Corless, Robert M.       72—1 to 72—21    
Corner minor        21—7   see    
Corrected seminormal equations        39—6    
Correlation coefficient        52—3    
Correlation matrix, positive definite matrices       8—6    
Correlation matrix, random vectors       52—4    
Correlation, random vectors       52—3    
Correlations and variates       53—7 to 53—8    
Cosine and sine       11—11    
Cospectral graphs        28—5    
costs, Mathematica software       73—24    
Coupling time       25—9    
Courant — Fischer inequalities       14—4    
Courant — Fischer theorem, eigenvalues       14—4    
Courant — Fischer theorem, Hermitian matrices       8—3    
Covariance matrix, positive definite matrices       8—9    
Covariance matrix, random vectors       52—3    
Covariance, random vectors        52—3    
Cover, combinatorial matrix theory        27—2    
Cramer’s Rule        4—3   37—17    
Craven and Csordas studies       21—11 to 21—12    
Critical digraphs       25—6   25—7   see    
Critical vertices       25—6    
Cross correlation       64—4    
Cross, Mathematica software       73—3   73—5    
Cross-covariance matrix       52—4    
Cross-positives        26—13    
CrossProduct, Maple software       72—3    
CRS (compressed row storage) scheme        40—4    
Csordas, Craven and, studies       21—11 to 21—12    
Cubics, Mathematica software       73—14   73—15    
Cui, Feng        60—13    
Cumulative distribution function       52—2    
Cut lattice       30—2    
Cut space       30—2    
Cut vertices       36—3    
Cuthill — McKee algorithm       40—16    
Cycle conditions       35—9    
Cycle of length       28—1   28—2    
Cycle products, digraphs       29—4 to 29—6    
Cycle-clique        35—14    
Cycles of length       33—2    
Cycles, digraphs       29—2    
Cycles, Jacobi method       42—18    
Cycles, matrices       48—2    
Cycles, pattern       33—9    
Cycles, simplex method       50—12    
Cycles, time       25—8    
Cyclic code       61—6    
Cyclic normal form, digraphs       29—9 to 29—11    
Cyclic normal form, imprimitive matrices       29—10    
Cyclic simplexes       66—12    
Cyclically real ray pattern       33—14    
Cyclicity theorem       25—8    
Cyclicity, matrix power asymptotics       25—8    
D-optimal matrices, balanced matrices       32—12    
D-optimal matrices, fundamentals       32—1    
D-optimal matrices, nonregular matrices       32—7 to 32—9    
D-optimal matrices, nonsquare case        32—2 to 32—12    
D-optimal matrices, regular matrices        32—5 to 32—7    
D-optimal matrices, square case       32—2 to 32—4    
D-stability       19—5 to 19—7    
Damped least squares       39—9 to 39—10    
Dangling node       63—11    
Daniel studies       44—4    
Data Encryption Standard (DES) cryptographysystem        62—17    
Data fitting       39—3 to 39—4    
Data matrix       53—2 to 53—3    
Data perturbations       38—2    
Datta, Biswa Nath        37—1 to 37—21    
Davidson’s method       43—10    
Day, Jane       1—1 to 1—15    
DCT       see «Discrete Fourier transform (DFT)»    
de Oliveria studies        20—3    
De Rijk’s row-cyclic pivoting       46—4    
DeAlba, Luz M.       4—1 to 4—11    
Decoder       61—2    
Decoding       61—2    
Decomposable tensors       13—3    
Decomposition, direct solution of linear systems       38—7 to 38—15    
Decomposition, high relative accuracy       46—7 to 46—10    
Decomposition, least squares solutions       39—11 to 39—12    
Decomposition, Mathematica software       73—18 to 73—19    
Decomposition, matrix group       67—1    
Decomposition, Morse, dynamical systems       56—7 to 56—9    
Decomposition, rank revealing decomposition       39—11 to 39—12    
Decomposition, semisimple and simple algebras       70—4    
Decomposition, singular values       17—15    
Decomposition, symmetric and Grassmann tensors       13—13    
Decomposition, symmetric factorizations       38—15    
Decomposition, tensors, multilinear algebra       13—7    
Deconvolution, Fourier analysis        58—8    
Deconvolution, functional and discrete theories        58—16    
Decoupling Principle        59—1   59—2    
Deeper properties       21—9 to 21—12    
Defective matrices       4—6    
Definite matrices       see «Positive definite matrices (PSD)»    
Definite pencils        15—10    
Deflation       42—2    
Degenerate characteristics, sesquilinear forms       12—6    
Degenerate characteristics, simplex method       50—12    
Degree, certain integral domains       23—2    
Degree, characters       68—5    
Degree, control theory       57—2    
Degree, convolutional codes       61—11    
Degree, frequency-domain analysis       57—6    
Degree, general properties       69—5    
Degree, graphs       28—2    
Degree, group representations       68—1    
Degree, matrix group        67—1    
Degree, matrix representations       68—3    
Degree, max-plus permanent        25—9    
Deletion, edges and vertices       28—4    
Delsarte’s Linear Programming Bound       28—12    
Delta function       58—2    
demand, Mathematica software       73—24    
Demmel — Kahan singular value decomposition       45—7 to 45—8    
Demmel, James       75—1 to 75—23    
Denardo algorithm       25—8    
Denman — Beavers iteration       11—11    
Dense matrices, fundamentals       43—1    
Dense matrices, large-scale matrix computations        49—2    
Dense matrices, software       77—2    
Dense matrices, techniques       43—3 to 43—9    
Depth, Jordan canonical form       6—3    
Derangements       31—6    
Derivation, Lie algebras        70—1    
Derived algebra       70—3    
Derogatory matrices       4—6    
DES (Data Encryption Standard) cryptography system       62—17    
Desargues’ theorem       65—8   65—9    
Design matrices, D-optimal matrices       32—1    
Design matrices, linear statistical models       52—8    
Design, square case       32—2    
det command, Matlab software       71—17    
det function, Matlab software       71—3    
Det, Mathematica software       73—10   73—11    
Detection, control theory       57—2    
Determinant, Maple software       72—5    
Determinantal region        33—14    
Determinantal relations        14—10 to 14—12    
Determinants, advanced results        4—3 to 4—6    
Determinants, connections       31—12 to 31—13    
Determinants, fast matrix multiplication       47—10    
Determinants, fundamentals        4—1 to 4—3    
Determinants, invariants       23—5    
Deterministic Markov decision process        25—3    
Deterministic spectral estimation        64—14    
Deutsch-Jozsa problem       62—9 to 62—11    
Deutsch’s problem       62—8 to 62—9    
Developer’HessenbergDecomposition’, Mathematica software       73—27    
DGEMM BLAS subroutine package       42—21    
DGKS mechanism       44—4    
Dhillon, Inderjit S.       45—1 to 45—12    
diag, Mathematica software       73—16    
Diagonal entry        1—4   23—5    
Diagonal matrices       1—4    
Diagonal pattern       33—2    
Diagonal product       27—10    
Diagonal stability       19—9    
Diagonalization, eigenvalue problems        15—10    
Diagonalization, eigenvalues and eigenvectors       4—6   4—7    
Diagonally dominant matrices       9—17    
Diagonally scaled representation       46—10    
Diagonally scaled totally unimodular (DSTU)        46—8   46—9    
DiagonalMatrix, Mathematica software, eigenvalues        73—15   73—16    
DiagonalMatrix, Mathematica software, matrices        73—6   73—8    
Diagonals, square matrices       27—3    
Diameter, eigenvalues       34—7    
Diao, Zijian       62—1 to 62—19    
Dias da Silva, Jose A.       13—1 to 13—26    
Differentiable functions        56—5    
Differential equations, constant coefficients       55—1 to 55—5    
Differential equations, eigenvalues and eigenvectors       4—10 to 4—11    
Differential equations, linear different equations        55—1 to 55—5    
Differential equations, linear differential-algebraic equations       55—7 to 55—10   55—14    
Differential equations, linear ordinary differential equations        55—5 to 55—6   55—10    
Differential equations, linearization       56—19    
Differential equations, stability       55—10 to 55—16    
Differential quotient-difference (dqds) step       45—8 to 45—9    
Differential-algebraic equations        55—1    
Differential-algebraic equations of order       55—2    
Digits, Maple software        72—14    
Digraphs, adjacency matrix        29—3 to 29—4    
Digraphs, cycle products        29—4 to 29—6    
Digraphs, cyclic normal form       29—9 to 29—11    
Digraphs, directed graphs       29—3 to 29—4    
Digraphs, fundamentals       29—1 to 29—3    
Digraphs, irreducible matrices       29—6 to 29—8    
Digraphs, irreducible, imprimitive matrices       29—9 to 29—11    
Digraphs, matrices       29—3 to 29—4    
Digraphs, matrix completion problems        35—2    
Digraphs, max-plus algebra       25—2    
Digraphs, minimal connection       29—12 to 29—13    
Digraphs, modeling and analyzing fill       40—11    
Digraphs, nearly reducible matrices       29—12 to 29—13    
Digraphs, nonnegative and stochastic matrices       9—2    
Digraphs, P-,   and  -matrices       35—15 to 35—16    
Digraphs, primitive digraphs and matrices       29—8 to 29—9    
Digraphs, sign-pattern matrices       33—2    
Digraphs, strongly connected digraphs       29—6 to 29—8    
Digraphs, walk products       29—4 to 29—5    
Dihedral interior angle       66—7    
Dilations, numerical range        18—9 to 18—10    
Dimension reduction        49—14 to 49—15    
Dimension theorem, kernel       3—5    
Dimension theorem, matrix range       2—6 to 2—9    
Dimension theorem, null space       2—6 to 2—9    
Dimension theorem, range        3—5    
Dimension theorem, rank       2—6 to 2—9    
Dimension, doubly stochastic matrices       27—10    
Dimension, Euclidean point space        66—2    
Dimension, Euclidean simplexes       66—7    
Dimension, grading       70—9    
Dimension, nonassociative algebra       69—1    
Dimension, simultaneous similarity        24—8    
Dimension, vector space        2—3    
Dimensional projective spaces and subspaces       65—6    
Dimensions, Mathematica software       73—6   73—7   73—27    
Dirac’s bra-ket notation       62—2    
Direct isometry       65—5   see    
Direct solution, linear systems, fundamentals        38—1    
Direct solution, linear systems, Gauss elimination        38—7 to 38—12    
Direct solution, linear systems, LU decomposition        38—7 to 38—12    
Direct solution, linear systems, orthogonalization        38—13 to 38—15    
Direct solution, linear systems, perturbations       38—2 to 38—5    
Direct solution, linear systems, QR decomposition       38—13 to 38—15    
Direct solution, linear systems, symmetric factorizations       38—15 to 38—17    
Direct solution, linear systems, triangular linear systems       38—5 to 38—7    
Direct sum, block diagonal and triangular matrices       10—4    
Direct sum, decompositions       2—4 to 2—6    
Direct sum, direct sum decompositions       2—5    
Direct sum, group representations       68—3    
Direct sum, nonassociative algebra       69—3    
Direct sum, semisimple and simple algebras       70—3    
Direct Toeplitz solvers        48—4 to 48—5    
Directed arcs, digraphs        29—1    
Directed bigraphs        30—4    
Directed digraphs        29—1    
Directed edges        29—1    
Directed graphs        29—3 to 29—4    
Directed multigraph        29—2    
Direction space, affine spaces        65—2    
Direction, arrival estimation        64—15 to 64—18    
Directory structure and contents        76—3    
Dirichlet conditions        59—10    
Discrete approximation        58—13    
Discrete event systems        25—3 to 25—4    
Discrete Fourier transform (DFT)        58—9    
Discrete invariants        24—11    
Discrete stochastic process        54—1    
Discrete theory        58—2 to 58—17    
Discrete time Fourier transform        64—2    
Discrete variables        52—2    
Discrete Wiener filtering problem        64—10    
Discriminant coordinates        53—6    
Disjoint matrix multiplication        47—8    
dispersion        21—7    
Dispersion matrix        52—3    
Dissection strategy        40—16    
Dissimilarity        53—13    
Dissimilarity matrix        53—14    
Distance bounds        61—5 to 61—6    
Distance matrix        60—2    
                            
                     
                  
			 
		          
			Ðåêëàìà