Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Strong Arnold Hypothesis        28—9   28—10    
Strong combinatorial invariants        27—1   27—3    
Strong connections       9—2    
Strong duality, duality and optimality conditions       51—6    
Strong duality, semidefinite programming       51—7    
Strong nonsingularity       47—9    
Strong Parter vertex       34—2    
Strong preservation       22—1    
Strong product       28—2    
Strong rank        25—13    
Strong sign nonsingularity       33—3    
Strong stability        37—18    
Strongly connected components, irreducible matrices       29—7    
Strongly connected components, Jordan algebras       69—13    
Strongly connected digraphs       29—6 to 29—8    
Strongly inertia preserving       19—9    
Strongly regular graphs       28—3    
Strongly stable matrices       19—7    
Structure and invariants        27—1 to 27—3    
Structure constants       69—2    
Structure index       63—9    
Structure matrix       27—7    
Structured matrices, computations, direct Toeplitz solvers        48—4 to 48—5    
Structured matrices, computations, fundamentals       48—1 to 48—4    
Structured matrices, computations, iterative Toeplitz solvers       48—5    
Structured matrices, computations, linear systems       48—5 to 48—8    
Structured matrices, computations, total least squares problems        48—8 to 48—9    
Structured matrices, high relative accuracy        46—7 to 46—10    
Structured matrices, Maple software       72—16 to 72—18    
Structured pseudospectrum       16—12    
Stuart, Jeffrey L.       6—14   29—1    
Studham, Matthew       60—13    
Sturn-Liouville problem       20—10    
Styan, Evelyn Mathason       53—14    
Styan, George P.H.       52—1 to 52—15   53—1    
Stykel, Tatjana       55—1 to 55—16    
Sub-bimodules       69—6    
Subalgebra       69—3    
Subdigraphs       29—2    
Subgraph       28—2    
Submatrices, fundamentals       1—4   1—6    
Submatrices, Gaussian and Gauss — Jordan elimination       1—8 to 1—9    
Submatrices, inequalities       17—7    
Submatrices, Matlab software       71—1 to 71—3    
Submatrices, partitioned matrices       10—1 to 10—3    
SubMatrix, Mathematica software       73—13    
Submodules, Bezout domains       23—8    
Submodules, modules       70—7    
Submultiplicative properties       18—6    
Subnormal floating point numbers        37—11    
Suboptimal control problem       57—15    
Subordinate matrix norms       37—4    
Subpatterns, sign-pattern matrices       33—2    
Subpermanents       31—9 to 31—10    
Subrepresentation       68—1    
Subroutine packages, ARPACK       76—1 to 76—10    
Subroutine packages, BLAS       74—1 to 74—7    
Subroutine packages, EIGS       76—1 to 76—10    
Subroutine packages, LAPACK        75—1 to 75—23    
subs command, Matlab software       71—17   71—18    
Subsemimodules       25—2    
Subspaces, direct sum decompositions       2—5    
Subspaces, direction, arrival estimation       64—16    
Subspaces, implicitly restarted Arnoldi method       44—9 to 44—10    
Subspaces, iteration       42—2    
Subspaces, nonassociative algebra       69—3    
Subspaces, vector spaces       1—2    
Substochastic matrices       9—15 to 9—17    
Subtractive cancellation, conditioning and condition numbers       37—8    
Subtractive cancellation, floating point numbers       37—15    
Subtractive cancellation, significant digits       37—13    
Subtuple theorem       20—7    
Successive overrelaxation (SOR) methods       41—3 to 41—4    
Sufficient conditions       20—8 to 20—10    
sum command, Matlab software       71—17    
Sum of squares, residual        52—8    
Sum, characters        68—5    
Sum, direct sum decompositions        2—5    
Sum, vector spaces       3—2    
Sum-norm       37—2    
Sun lemma, eigenvalue problems       15—10    
Sun lemma, singular value problems       15—12    
Sup-norm       37—2    
Superposition Principle, double generalized stars       34—12 to 34—14    
Superposition Principle, mathematical physics       59—1    
Superposition Principle, quantum computation       62—1 to 62—2    
supply, Mathematica software       73—24    
Support line       18—3    
Support, linear inequalities and projections       25—10    
Support, scaling nonnegative matrices       9—21    
Support, square matrices, strong combinatorial invariants       27—3    
surfc command, Matlab software       71—15    
Surjective, kernel and range       3—5    
Surplus variables        50—7    
Suttle’s algebra       69—15    
Suttle’s example       69—8    
SVD       see «Singular value decomposition (SVD)»    
Sweedler notation        69—20    
Sweep, Jacobi method       42—18    
Switch, Mathematica software       73—8    
Switching equivalent        28—8    
Sylvester’s equation       57—10   57—11    
Sylvester’s Identity       4—5    
Sylvester’s law of nullity       14—13    
Sylvester’s laws of inertia, congruence       8—6    
Sylvester’s laws of inertia, Hermitian forms        12—8 to 12—9    
Sylvester’s laws of inertia, symmetric bilinear forms       12—4    
Sylvester’s observer equation       57—12    
Sylvester’s theorem       42—14    
sym command, Matlab software       71—17    
Sym multiplication       13—17 to 13—19    
Symbol curve, Toeplitz matrices       16—6    
Symbolic mathematics       71—17 to 71—19    
Symbols, Toeplitz matrices       16—6    
Symmetric algebra, Lie algebras       70—2    
Symmetric algebra, tensor algebras       13—22    
Symmetric matrices        see «Multiplicity lists»    
Symmetric matrices, direct sum decompositions       2—5    
Symmetric matrices, fundamentals       1—6    
Symmetric matrices, invariance       3—7    
Symmetric matrices, kernel and range       3—6    
Symmetric matrices, Maple software       72—14    
Symmetric matrices, semidefinite programming       51—3    
Symmetric matrix eigenvalue techniques, bisection method       42—14 to 42—15    
Symmetric matrix eigenvalue techniques, comparison ofmethods       42—21 to 42—22    
Symmetric matrix eigenvalue techniques, divide and conquer method       42—12 to 42—14    
Symmetric matrix eigenvalue techniques, fundamentals       42—1 to 42—2    
Symmetric matrix eigenvalue techniques, implicitly shifted QR method       42—9 to 42—11    
Symmetric matrix eigenvalue techniques, inverse iteration       42—14 to 42—15    
Symmetric matrix eigenvalue techniques, Jacobi method        42—17 to 42—19    
Symmetric matrix eigenvalue techniques, Lanczos method       42—19 to 42—21    
Symmetric matrix eigenvalue techniques, method comparison       42—21 to 42—22    
Symmetric matrix eigenvalue techniques, methods       42—2 to 42—5    
Symmetric matrix eigenvalue techniques, multiple relatively Symmetric matrix eigenvalue techniques, robust representations       42—15 to 42—17    
Symmetric matrix eigenvalue techniques, tridiagonalization       42—5 to 42—9    
Symmetric properties, asymmetric maps       13—10 to 13—12    
Symmetric properties, bilinear forms       12—3 to 12—5    
Symmetric properties, cone programming       51—2    
Symmetric properties, definite eigenproblems        75—15 to 75—17    
Symmetric properties, digraphs        35—2    
Symmetric properties, dissimilarity       53—13    
Symmetric properties, eigenvalue problems       75—9 to 75—11    
Symmetric properties, factorizations       38—15 to 38—17    
Symmetric properties, form       12—1 to 12—5    
Symmetric properties, function, elementary        P—2 to P—3    
Symmetric properties, group representations       68—10 to 68—11    
Symmetric properties, Hamiltonian, minimally chordal       35—15    
Symmetric properties, Hermitian matrices        8—1    
Symmetric properties, indefinite matrices        46—14 to 46—16    
Symmetric properties, inertia set       33—11    
Symmetric properties, Kronecker product        51—3    
Symmetric properties, Lanczos process       49—6 to 49—7    
Symmetric properties, maps        13—10 to 13—12    
Symmetric properties, matrices       1—4    
Symmetric properties, matrix games       50—18    
Symmetric properties, maximal rank       33—11    
Symmetric properties, minimal rank        33—11    
Symmetric properties, positive definite matrices       40—11    
Symmetric properties, product       13—13    
Symmetric properties, reducible matrices       9—11 to 9—12    
Symmetric properties, scaling        9—20   27—10    
Symmetric properties, tensors       13—12 to 13—17    
Symmetric rank revealing decomposition (SRRD)       46—14    
Symmetrization       25—13    
Symmetrized rank       25—13    
Symplectic group       67—5    
syms command, Matlab software        71—17    
Syndrome of y       61—3    
Systematic encoder       61—3    
Systems analysis       58—7    
Systems of linear equations        1—9 to 1—11    
Table, Mathematica software, linear programming       73—24    
Table, Mathematica software, matrices       73—6   73—8    
Table, Mathematica software, singular values       73—18    
Table, Mathematica software, vectors        73—3   73—4    
Tablespacing, Mathematica software        73—7    
Take, Mathematica software, matrices manipulation        73—13    
Take, Mathematica software, vectors       73—3    
TakeColumns, Mathematica software       73—13    
TakeMatrix, Mathematica software       73—13    
TakeRows, Mathematica software       73—13    
Tam, Bit-Shun        26—1 to 26—14    
Tam, T.Y.       68—1 to 68—11    
Tam-Schneider condition       26—7    
Tangent space       65—2    
tangents       24—1   24—2    
Tanner, M.       61—11    
Tao, Knutson and, studies, eigenvalues       17—13    
Tao, Knutson and, studies, Hermitian matrices       8—4    
Taussky, Motzkin and, studies       7—8    
Taylor coefficients       49—15    
Taylor series       37—20 to 37—21    
Taylor series expansion, irreducible matrices       9—5    
Taylor series expansion, matrix function       11—3 to 11—4    
Templates, ARPACK       76—8    
Tensor algebras        13—20 to 13—22   70—2    
Tensor products       10—8   68—3    
Tensors, algebras       13—20 to 13—22    
Tensors, decomposable tensors       13—7    
Tensors, Grassmann tensors       13—12 to 13—17    
Tensors, inner product spaces        13—22 to 13—24    
Tensors, linear maps       13—8 to 13—10    
Tensors, matrix similarities       24—1    
Tensors, multiplication       13—17 to 13—19    
Tensors, products       13—3 to 13—7   13—8   13—22    
Tensors, symmetric tensors       13—12 to 13—17    
Term rank, combinatorial matrix theory       27—2    
Term rank, inertia        33—11    
Term-by-document matrix        63—1    
Term-wise singular value inequalities        17—9    
Ternary Golay code        61—8   61—9    
Testing        21—6 to 21—7    
Text, Mathematica software        73—5    
TFQMR (transpose-free quasi-minimal residual) linear systems ofequations       49—14    
TGEVC LAPACK subroutine       43—7    
TGSEN LAPACK subroutine       43—7    
TGSNA LAPACK subroutine       43—7    
th cofactor       4—1    
th compound matrix        4—3    
th minor        4—1    
Thompson’s Standard Additive inequalities       17—8    
Thompson’s Standard Multiplicative inequalities        17—8    
Thread, Mathematica software, fundamentals        73—26    
Thread, Mathematica software, linear programming        73—24    
Thread, Mathematica software, linear systems        73—20   73—22    
Threshold pivoting       38—10    
Ties-to-even standard       37—12    
Tight sign-central matrices        33—17    
Tikhonov regularization        39—9    
Time space        54—1    
Time varying linear differential equations       56—11    
Time-invariance       57—2    
Time-map        56—5    
Timed event graphs        25—4    
Tisseur, Higham and, studies       16—12    
Tits system       67—4    
toeplitz function, Matlab software       71—6    
Toeplitz IEPs (ToIEPs)       20—10    
Toeplitz matrices, direct Toeplitz solvers       48—4 to 48—5    
Toeplitz matrices, iterative Toeplitz solvers       48—5    
Toeplitz matrices, least squares algorithms       39—7    
Toeplitz matrices, linear prediction       64—8    
Toeplitz matrices, Maple software        72—18    
Toeplitz matrices, pseudospectra        16—5 to 16—8    
Toeplitz matrices, structured matrices        48—1   48—4    
Toeplitz matrices, totally positive and negative matrices        21—12    
Toeplitz operator        16—5    
Toeplitz-Block matrices        48—3    
Toeplitz-like matrices        48—5 to 48—6    
Toeplitz-plus-band matrices        48—5   48—7    
Toeplitz-plus-Hankel matrices        48—5   48—6    
ToIEPs (Toeplitz IEPs)        20—10    
Tolerance, Mathematica software, matrix algebra        73—11    
Tolerance, Mathematica software, singular values        73—17    
Top-down algorithm        40—17    
Topic drift        63—13 to 63—14    
Topological conjugacy        56—5    
Topological equivalence       56—5    
Torus        70—4    
Total degree        23—2    
Total least squares problems        39—2   48—8    
Total memory        61—12    
Total positive and total negative matrices, deeper properties        21—9 to 21—12    
Total positive and total negative matrices, factorizations        21—5 to 21—6    
Total positive and total negative matrices, fundamentals        21—1    
Total positive and total negative matrices, properties        21—2 to 21—4    
Total positive and total negative matrices, recognition        21—6 to 21—7    
Total positive and total negative matrices, spectral properties        21—8    
Total positive and total negative matrices, testing        21—6 to 21—7    
Total signed compound (TSC), rank revealing decomposition        46—8    
Total signed compound (TSC), rank revealing decompositions        46—9   46—10    
Total support        27—3    
Total variance        53—5    
Total, Mathematica software, fundamentals        73—27    
Total, Mathematica software, linear programming        73—24    
Total, Mathematica software, linear systems        73—23    
Total, Mathematica software, matrices        73—7   73—9    
Total, Mathematica software, vectors        73—3   73—5    
Totally hyperacute simplexes        66—10    
Totally nonnegative matrix        46—10    
Totally positive matrices        21—12    
Totally unimodular        46—8    
Tournament matrices        27—8 to 27—10    
Tr, Mathematica software        73—7    
Trace        1—4   3—3    
trace command, Matlab software        71—17    
Trace debugging capability, ARPACK        76—7    
Trace norm        17—6    
Trace, composition algebras        69—8    
Trace-minimal graph        32—9    
Trace-sequence        32—9    
Trailing diagonal        15—12    
Trajectory        see «Orbit»    
Transfer function, dimension reduction        49—14    
Transfer function, frequency-domain analysis        57—5    
Transfer function, signal processing        64—2    
Transform principal component        26—12    
Transform, ATLAST        71—22    
Transformations, linear        3—1 to 3—9    
Transience        9—8   9—11    
                            
                     
                  
			 
		          
			Ðåêëàìà