Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                         -matrices       31—8    
 -matrices       35—12 to 35—13    
(MRRR) multiple relatively robust representations        42—15 to 42—17    
1hs, Mathematica software        73—20    
Abelian, Lie algebras        70—2    
Abs, Mathematica software        73—26    
Absolute bound        28—11    
Absolute errors, conditioning and condition numbers        37—7    
Absolute errors, floating point numbers        37—13   37—16    
Absolute irreducibility        67—1    
Absolute matrix norms        37—4    
Absolute values        17—1    
Absolute vector norm        37—2    
Absolute, simple graphs        36—9 to 36—10    
Absorbing, irreducible classes        54—5    
Absorbing, vector norms        37—3    
Absorbing, vector seminorms        37—4    
Access equivalence irreducible classes        54—5    
Access equivalence, irreducible matrices        29—6   29—7    
Access equivalence, max-plus eigenproblem        25—6    
Access equivalence, nonnegative and stochastic matrices        9—2    
Action, group representations        68—2    
Active branch, algebraic connectivity        36—5    
Active constraints        51—1    
Acyclic matrices multiplicative D-stability        19—6    
Acyclic matrices rank revealing decompositions        46—9    
Ad-nilpotency        70—4    
Ad-semisimple linear transformation        70—4    
Adaptive filtering, signal processing        64—12 to 64—13    
Addition        1—1   1—3    
Additive coset        2—5    
Additive D-stability        19—7 to 19—8    
Additive identity axiom        1—1    
Additive IEPs (AIEPs)        20—10    
Additive inverse axiom        1—1    
Additive preservers        22—7 to 22—8    
Adjacency convex set points        50—13    
Adjacency digraphs        29—3 to 29—4    
Adjacency graphs        28—5 to 28—7    
Adjacency Hermitian matrices        8—2    
Adjacency linear preservers        22—7    
Adjacency vertices        28—2    
Adjoint linear transformation        51—3    
Adjoint map, Lie algebras        70—2    
Adjoints of linear operators, inner product spaces        5—5 to 5—6    
Adjoints of linear operators, semidefinite programming        51—3    
Adjoints, inner product spaces        13—22    
Adjugates, determinants        4—3    
Adjusting random vectors        52—4    
Admissibility, control theory        57—2    
Admittance matrix        28—7    
Advanced linear algebra, bilinear forms        12—1 to 12—9    
Advanced linear algebra, cone invariant departure, matrices        26—1 to 26—14    
Advanced linear algebra, equalities, matrices        14—1 to 14—17    
Advanced linear algebra, functions of matrices        11—1 to 11—12    
Advanced linear algebra, inequalities, matrices        14—1 to 14—17    
Advanced linear algebra, inertia, matrices        19—1 to 19—10    
Advanced linear algebra, integral domains, matrices over        23—1 to 23—10    
Advanced linear algebra, inverse eigenvalue problems        20—1 to 20—12    
Advanced linear algebra, linear preserver problems        22—1 to 22—8    
Advanced linear algebra, matrix equalities and inequalities        14—1 to 14—17    
Advanced linear algebra, matrix perturbation theory        15—1 to 15—16    
Advanced linear algebra, matrix stability and inertia        19—1 to 19—10    
Advanced linear algebra, max-plus algebra        25—1 to 25—14    
Advanced linear algebra, multilinear algebra        13—1 to 13—26    
Advanced linear algebra, numerical range        18—1 to 18—11    
Advanced linear algebra, perturbation theory, matrices        15—1 to 15—16    
Advanced linear algebra, pseudospectra        16—1 to 16—15    
Advanced linear algebra, quadratic forms        12—1 to 12—9    
Advanced linear algebra, sesquilinear forms        12—1 to 12—9    
Advanced linear algebra, similarity of matrix families        23—1 to 23—10    
Advanced linear algebra, singular values and singular value inequalities        17—1 to 17—15    
Advanced linear algebra, stability, matrices        19—1 to 19—10    
Advanced linear algebra, total negativity, matrices        21—1 to 21—12    
Advanced linear algebra, total positivity, matrices        21—1 to 21—12    
Affine algebraic variety        24—8    
Affine function        50—1    
Affine parameterized IEPs (PIEPs)        20—10 to 20—12    
Affine subspace determination        65—2    
Affine-independence        65—2    
AIEPs (additive IEPs)        20—10    
Aissen studies        21—12    
Aitken estimator        52—8    
Akian, Marianne        25—1 to 25—14    
Akivis algebra        69—16 to 69—17    
Albert algebra        69—4   69—14    
Alexandroff inequality        25—10    
Alexandrov’s inequality        31—2    
Algebra        P—1    
Algebra applications        see also «Nonassociative algebra»    
Algebra applications, group representations        68—1 to 68—11    
Algebra applications, Lie algebras        70—1 to 70—10    
Algebra applications, matrix groups        67—1 to 67—7    
Algebra applications, nonassociative algebra        69—1 to 69—25    
Algebraic aspects, least squares solutions        39—4 to 39—5    
Algebraic connectivity, absolute, simple graphs        36—9 to 36—10    
Algebraic connectivity, Fiedler vectors        36—7 to 36—9    
Algebraic connectivity, generalized Laplacian        36—10 to 36—11    
Algebraic connectivity, matrix representations        28—7    
Algebraic connectivity, multiplicity        36—10 to 36—11    
Algebraic connectivity, simple graphs        36—1 to 36—4   36—9    
Algebraic connectivity, trees        36—4 to 36—6    
Algebraic connectivity, weighted graphs        36—7 to 36—9    
Algebraic eigenvalues        25—9   see    
Algebraic function, matrix similarities        24—1    
Algebraic geometric Goppa (AG) code        61—10    
Algebraic multigrid, preconditioners        41—11    
Algebraic multiplicity        4—6    
Algebraic Riccati equation (ARE)        57—10   57—12    
Algorithms        see specific algorithm    
Algorithms, Arbitrary Precision Approximating (APA)        47—6    
Algorithms, Arnoldi        41—7    
Algorithms, BiCGSTAB        41—8    
Algorithms, biconjugate gradient (BCG/BiCG)        41—7   49—13    
Algorithms, bilinear noncommutative        47—2    
Algorithms, bit flipping algorithm        61—11    
Algorithms, Conjugate Gradient (CG)        41—4   41—6    
Algorithms, conjugate gradient squared (CGS)        41—8    
Algorithms, Denardo        25—8    
Algorithms, error analysis        37—16 to 37—17    
Algorithms, ESPRIT        64—17    
Algorithms, Euclid’s        23—2    
Algorithms, fast matrix multiplication        47—2 to 47—7    
Algorithms, Full Orthogonalization Method (FOM)        41—7    
Algorithms, Generalized Minimal Residual (GMRES)        41—7   49—13    
Algorithms, Lanczos algorithm        41—4 to 41—5    
Algorithms, least squares solutions        39—6 to 39—7    
Algorithms, left-preconditioned BiCGSTAB algorithm        41—12    
Algorithms, Levinson-Durbin algorithm        64—8    
Algorithms, Minimal Residual (MINRES)        41—4   41—6    
Algorithms, MUSIC        64—17    
Algorithms, non-Hermitian Lanczos algorithm        41—7    
Algorithms, noncommutative        47—2    
Algorithms, policy iteration        25—7    
Algorithms, power algorithm        25—7    
Algorithms, preconditioned conjugate gradient (PCG)        41—13    
Algorithms, quasi-minimal residual (QMR)        41—8   49—13    
Algorithms, restarted GMRES algorithm        41—7    
Algorithms, singular value decomposition        45—4 to 45—12    
Algorithms, transpose-free quasi-minimal residual (TFQMR)        49—14    
Algorithms, two-sided Lanczos algorithm        41—7    
All-ones matrix        52—4    
Allowing characteristics, random vectors        52—4    
Allowing characteristics, sign-pattern matrices        33—9 to 33—11    
Alphabet, coding theory        61—1    
Alt multiplication        13—17 to 13—19    
Alternate path, single arc        35—14    
Alternating bilinear forms        12—5 to 12—6    
Alternative algebras        69—2   69—10    
Alternative bimodule        69—10    
Alternator        13—12    
AMG code        41—12    
Analysis applications, control theory        57—1 to 57—17    
Analysis applications, differential equations        55—1 to 55—16    
Analysis applications, dynamical systems        56—1 to 56—21    
Analysis applications, Fourier analysis        58—1 to 58—20    
Analysis applications, LTI systems        57—7 to 57—10    
Analysis applications, stability        55—1 to 55—16    
Analytical similarity        24—1    
Analyzing fill        40—10 to 40—13    
Angles, inner product spaces        5—1    
Annihilator        3—8 to 3—9    
Anti-identity matrices        48—2    
Anticommutative algebra        69—2    
Anticommutativity        70—2    
Anticommutator        69—3    
Antisymmetric maps        13—10 to 13—12    
Antisymmetry        12—5    
Aperiodicity, characterizing        9—3    
Aperiodicity, irreducible classes        54—5    
Aperiodicity, irreducible matrices        9—3    
Aperiodicity, reducible matrices        9—7    
Append, Mathematica software, linear systems        73—23    
Append, Mathematica software, matrices manipulation        73—13    
Append, Mathematica software, vectors        73—3    
AppendColumns, Mathematica software        73—13    
Appending, vertices        36—3    
AppendRows, Mathematica software        73—13    
Applications, algebra, group representations        68—1 to 68—11    
Applications, algebra, Lie algebras        70—1 to 70—10    
Applications, algebra, matrix groups        67—1 to 67—7    
Applications, algebra, nonassociative algebra        69—1 to 69—25    
Applications, analysis, control theory        57—1 to 57—17    
Applications, analysis, differential equations        55—1 to 55—16    
Applications, analysis, dynamical systems        56—1 to 56—21    
Applications, analysis, Fourier analysis        58—1 to 58—20    
Applications, analysis, stability        55—1 to 55—16    
Applications, biological sciences        60—1 to 60—13    
Applications, computer science, coding theory        61—1 to 61—13    
Applications, computer science, information retrieval        63—1 to 63—14    
Applications, computer science, quantum computation        62—1 to 62—19    
Applications, computer science, signal processing        64—1 to 64—18    
Applications, computer science, Web searches        63—1 to 63—14    
Applications, fast matrix multiplication        47—9 to 47—10    
Applications, geometry, Euclidean geometry        66—1 to 66—15    
Applications, geometry, geometry        65—1 to 65—9    
Applications, optimization, linear programming        50—1 to 50—24    
Applications, optimization, semidefinite programming        51—1 to 51—11    
Applications, physical sciences        59—1 to 59—11    
Applications, probability and statistics, linear statistical models        52—1 to 52—15    
Applications, probability and statistics, Markov chains        54—1 to 54—14    
Applications, probability and statistics, multivariate statistical analysis        53—1 to 53—14    
Applications, probability and statistics, random vectors        52—1 to 52—15    
Applications, semidefinite programming        51—9 to 51—11    
Apply, Mathematica software        73—3   73—5   73—27    
Approximate Jordan form, Maple software        72—15    
Approximate prescribed-line-sum scalings        9—21 to 9—22    
Approximation, fast matrix multiplication        47—6 to 47—7    
Approximation, linear programming        50—20 to 50—23    
Approximation, orthogonal projection        5—7    
ArbitraryPrecision Approximating (APA) algorithms        47—6    
ArcSin, Mathematica software        73—26    
ARE        see «Algebraic Riccati equation (ARE)»    
Arithmetic Euclidean vector space        66—1    
Arm, stars        34—10    
Arnold Hypothesis, Strong        28—9   28—10    
Arnoldi algorithm        41—7   41—8    
Arnoldi decomposition        16—11    
Arnoldi factorization, implicitly restarted Arnoldi method        44—2 to 44—4    
Arnoldi factorization, pseudospectra        16—3    
Arnoldi matrices        49—11    
Arnoldi method        see «Implicitly restarted Arnoldi method (IRAM)»    
Arnoldi method, eigenvalue computations        49—12    
Arnoldi method, implicit restarting        44—6    
Arnoldi method, large-scale matrix computations        49—10 to 49—11    
Arnoldi method, sparse matrices        43—9   43—11    
Arnoldi vectors, Arnoldi factorization        44—3    
Arnoldi vectors, Arnoldi process        49—11    
ARPACK subroutine package, computational modes        76—8 to 76—9    
ARPACK subroutine package, directory structure and contents        76—3    
ARPACK subroutine package, fundamentals        76—1 to 76—2   76—4    
ARPACK subroutine package, Lanczos methods        42—21    
ARPACK subroutine package, Matlab’s EIGS        76—9 to 76—10    
ARPACK subroutine package, naming conventions        76—3 to 76—4    
ARPACK subroutine package, precisions        76—3 to 76—4    
ARPACK subroutine package, pseudospectra computation        16—12    
ARPACK subroutine package, reverse communication        76—2    
ARPACK subroutine package, setup of problem        76—5 to 76—7    
ARPACK subroutine package, sparse matrices        43—9    
ARPACK subroutine package, types        76—3 to 76—4    
ARPACK subroutine package, use        76—7 to 76—8    
Array arithmetic, Maple software        72—8    
Array, Maple software        72—1   72—2    
Array, Mathematica software, matrices        73—6    
Array, Mathematica software, vectors        73—3   73—4    
ArrayPlot, Mathematica software, fundamentals        73—27    
ArrayPlot, Mathematica software, matrices        73—7   73—9    
ArrayRules, Mathematica software        73—6    
Arrays, Fourier analysis        58—2    
Arrays, manifold        64—16    
Arrays, Maple software        72—8 to 72—9    
Arrays, response vector        64—16    
Arrays, response vector, Maple software        72—8   72—9    
Arrival estimation direction        64—15 to 64—18    
Arrow, Mathematica software        73—5    
Artin’s theorem        69—3   69—11    
AspectRatio, Mathematica software        73—27    
Assignment polytope        27—10    
Associated divisor        61—10    
Associated linear programming        50—14    
Associated maps        13—19 to 13—20    
Association schemes, graphs        28—11 to 28—12    
Associations, generalized stars        34—11    
Associative algebra        69—2    
Associative center        69—5    
Associative enveloping algebra        69—13    
Associative nucleus        69—5    
Associativity axiom        1—1   1—2    
Associator ideal        69—5    
Associator, nonassociative algebra        69—2    
Asymmetric digraphs        35—2   see    
Asymptotic spectrum        47—8    
Asymptotic stability, control theory        57—2    
Asymptotic stability, linear differential-algebraic equations        55—14    
Asymptotic stability, linear ordinary differential equations        55—10    
Asymptotic stability, LTI systems        57—7    
Asymptotics, matrix powers        25—8 to 25—9    
ATLAST M-file collection        71—20    
Attractor-repeller decompositions        56—7    
Augmented matrices, Bezout domains        23—9    
Augmented matrices, systems of linear equations        1—9   1—11    
Augmented systems, least squares solution        39—4    
Autocorrelation matrix        64—5    
Autocorrelation sequence        64—4    
Automatic, Mathematica software, fundamentals        73—27    
Automatic, Mathematica software, singular values        73—17    
Automorphism, Lie algebras        70—1    
Automorphism, ring, linear preservers        22—7    
Autonomy, control theory        57—2    
Backward errors, analysis        37—20    
Backward errors, numerical stability and instability        37—18   37—20    
Backward errors, one-sided Jacobi SVD algorithm        46—2    
Backward stability, numerical stability and instability        37—18    
Backward stability, numerical stability and instability, one-sided Jacobi SVD algorithm        46—2    
BackwardsSubstitute, Maple software        72—9    
Bad columns        50—8    
Bad rows        50—8    
Badly-conditioned data        37—7    
Bai, Zhaojun        75—1 to 75—23    
Bailey, D.        47—5    
                            
                     
                  
			 
		          
			Ðåêëàìà