Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Nondefective matrices       4—6    
Nondegenerate properties, bilinear forms       12—2    
Nondegenerate properties, sesquilinear forms        12—6    
Nonderogatory matrices        4—6    
Nondifferentiation        18—3    
Nonempty sets, row and column indices        1—4    
Nonhomogenous products       9—22    
Nonlinear preservers       22—7 to 22—8    
Nonnegative IEPs (NIEPs), fundamentals        20—5    
Nonnegative IEPs (NIEPs), merging results        20—8    
Nonnegative IEPs (NIEPs), nonzero spectra       20—7 to 20—8    
Nonnegative IEPs (NIEPs), spectra       20—6 to 20—7    
Nonnegative IEPs (NIEPs), sufficient conditions        20—8 to 20—10    
Nonnegatives, constraints       50—3    
Nonnegatives, factorization       9—22    
Nonnegatives, fundamentals       9—1    
Nonnegatives, integer rank        30—8    
Nonnegatives, matrices, fundamentals        9—1 to 9—2    
Nonnegatives, matrices, inequalities        17—11    
Nonnegatives, matrices, inverse eigenvalue problem       9—22    
Nonnegatives, matrices, irreducible matrices       9—2 to 9—7    
Nonnegatives, matrices, max algebra       9—23    
Nonnegatives, matrices, nonhomogenous products        9—22    
Nonnegatives, matrices, nonnegative factorization        9—22    
Nonnegatives, matrices, P-,   and  -matrices, completion problems       35—17 to 35—18    
Nonnegatives, matrices, permanents       31—7    
Nonnegatives, matrices, Perron — Frobenius theorem        26—2    
Nonnegatives, matrices, product form       9—23    
Nonnegatives, matrices, reducible matrices       9—7 to 9—15    
Nonnegatives, matrices, scaling       9—20 to 9—23    
Nonnegatives, matrices, sets       9—23    
Nonnegatives, matrix factorization       63—5 to 63—8    
Nonnegatives, sign pattern matrices        33—12    
Nonnegatives, stable matrices       9—17    
Nonnegatives, vectors       26—2    
Nonnormality constant        44—10    
Nonprimary matrix function       11—2    
Nonrandom matrices       52—3    
Nonrandom vectors       52—3    
Nonregular matrices       32—7 to 32—9    
Nonscalar multiplications, approximation algorithms        47—6    
Nonscalar multiplications, fast algorithms       47—2    
Nonseparability        35—2    
Nonsingular properties, distribution        53—8    
Nonsingular properties, fundamentals       2—9 to 2—10    
Nonsingular properties, isomorphism       3—7 to 3—8    
Nonsingular properties, matrices       1—12    
Nonsingular properties, multivariate normal distribution       53—3    
Nonsquare case       32—2 to 32—12    
Nonsymmetric eigenproblems        75—17 to 75—20    
Nonsymmetric eigenvalue problems       75—11 to 75—13    
Nonsymmetric Lanczos process, Arnoldi process       49—10    
Nonsymmetric Lanczos process, large-scale matrixcomputations       49—8 to 49—10    
Nonsymmetric Lanczos process, linear dynamical systems        49—15    
Nonsymmetric problems, ARPACK       76—8    
Nonzero spectra       20—7 to 20—8    
norm command, Matlab software       71—17    
Norm estimation       18—9 to 18—10    
Norm, Maple software       72—3   72—5    
Norm, Mathematica software, fundamentals       73—26   73—27    
Norm, Mathematica software, matrix algebra        73—10   73—11    
Norm, Mathematica software, vectors       73—3   73—5    
Normal equations, least squares problems       5—14    
Normal equations, linear statistical models       52—8    
Normal vector, Euclidean point space       66—2    
Normal, Mathematica software       73—6   73—8    
Normalization       23—5    
Normalized properties, floating point numbers       37—11    
Normalized properties, immanant       31—13    
Normalized properties, matrices       25—6    
Normalized properties, scaling nonnegative matrices        9—20    
Norms, matrices        37—4 to 37—6    
Not invertible       1—12   see    
Notation index       N—1 to N—9    
Notebooks, Mathematica software       73—1    
Nth-derived algebra        70—3    
null command, Matlab software       71—8   71—17    
Null graphs       28—2    
Null recurrent state       54—7 to 54—9    
Null spaces, dimension theorem       2—6 to 2—9    
Null spaces, kernel and range       3—5    
Null spaces, linear independence, span, and bases       2—6    
Null spaces, matrix range       2—6 to 2—9    
Null spaces, rank       2—6 to 2—9    
Nullity, linear independence, span, and bases       2—6    
Nullity, matrix equalities and inequalities        14—12 to 14—15    
NullSpace, Maple software, matrix factoring       72—9    
NullSpace, Maple software, modular arithmetic       72—14 to 72—15    
NullSpace, Mathematica software, fundamentals       73—27    
NullSpace, Mathematica software, matrix algebra       73—10   73—12    
Nullspaces       39—4    
Numerical linear algebra, Maple software       72—13 to 72—15    
Numerical linear algebra, support routines       77—1    
Numerical methods, affine parameterized IEPs       20—11 to 20—12    
Numerical methods, fast matrix multiplication        47—1 to 47—10    
Numerical methods, high relative accuracy computation       46—1 to 46—16    
Numerical methods, implicitly restarted Arnoldi method       44—1 to 44—12    
Numerical methods, iterative solution methods       41—1 to 41—17    
Numerical methods, large-scale matrixcomputations       49—1 to 49—15    
Numerical methods, linear systems, direct solutions       38—1 to 38—17    
Numerical methods, linear systems, efficiency       37—1 to 37—21    
Numerical methods, linear systems, error analysis       37—1 to 37—21    
Numerical methods, linear systems, factorizations       38—1 to 38—17    
Numerical methods, linear systems, least squares solutions       39—1 to 39—12    
Numerical methods, linear systems, matrix norms        37—1 to 37—21    
Numerical methods, linear systems, sparse matrix methods       40—1 to 40—18    
Numerical methods, linear systems, stability       37—1 to 37—21    
Numerical methods, linear systems, vector norms       37—1 to 37—21    
Numerical methods, Markov chains       54—12 to 54—14    
Numerical methods, singular value decomposition       45—1 to 45—12    
Numerical methods, stability and instability       37—18 to 37—21    
Numerical methods, structured matrix computations       48—1 to 48—9    
Numerical methods, symmetric matrix techniques       42—1 to 42—22    
Numerical methods, unsymmetric matrix techniques       43—1 to 43—11    
Numerical orthogonality       46—2    
Numerical radius       18—1    
Numerical range, boundary points       18—3 to 18—4    
Numerical range, dilations        18—9 to 18—10    
Numerical range, examples        18—1 to 18—3    
Numerical range, fundamentals        18—1    
Numerical range, location        18—4 to 18—6    
Numerical range, matrix mappings        18—11    
Numerical range, matrix products       18—8 to 18—9    
Numerical range, norm estimation       18—9 to 18—10    
Numerical range, properties       18—1 to 18—3    
Numerical range, radius        18—6 to 18—8    
Numerical range, special boundary points       18—3 to 18—4    
Numerical range, spectrum        18—3 to 18—4    
Numerical range, unitary similarity       7—2    
Numerical rank       39—11    
Numerical stability and instability, error analysis       37—18 to 37—21    
Numerical stability and instability, Strassen’s algorithm       47—4    
Numerically orthogonal matrices       46—2    
numnull command, Matlab software        71—13    
O and o       P—5    
Objective function        50—1    
Oblique Petrov — Galerkin projection, eigenvalue Oblique Petrov — Galerkin projection, computations        49—12    
Oblique Petrov — Galerkin projection, large-scale matrix computations       49—2    
Observability Hessenberg form        57—9    
Observability Kalman decomposition        57—7    
Observability matrix        57—7    
Observableness, control theory       57—2    
Observer equation       57—2    
Octonions, generalized        69—4    
Odd cycle       33—2    
Oettli — Prager theorem       38—3    
Off-diagonal entry       1—4    
Off-norm, Jacobi method       42—17    
One(1)-chordal graphs       35—2    
One(1)-norm        37—2    
One-bit quantum gate        62—2    
One-dimensional harmonic oscillator       59—8    
One-sided Jacobi SVD algorithm, high relative accuracy        46—2 to 46—5    
One-sided Jacobi SVD algorithm, positive definite matrices       46—11    
One-sided Jacobi SVD algorithm, preconditioned Jacobi SVD algorithm       46—6    
One-sided Jacobi SVD algorithm, singular value decomposition       45—5    
One-sided Jacobi SVD algorithm, symmetric indefinite matrices       46—15    
One-to-one, kernel and range        3—5    
Onto, kernel and range       3—5    
Open halfspaces       66—2    
Open sector       33—14    
Operations and functions, Maple software       72—3   72—5    
Operator norms, matrix norms        37—4    
Operator norms, unitary similarity        7—2    
Optimal control problem       57—14    
Optimal estimation problem       57—12    
Optimal Krylov space methods       41—4 to 41—11    
Optimal pivoting strategy       42—17    
Optimal solution       50—1    
Optimal value       50—1    
Optimality conditions        51—5 to 51—7    
Optimality theorem        51—6    
Optimization, linear programming        50—1   50—1    
Optimization, matrix games       50—18    
Optimization, semidefinite programming       51—1 to 51—11    
Optimization, standard row tableaux        50—8    
Orbit, linear dynamical systems       56—5    
Orbit, simultaneous similarity        24—8    
Order predictable signals       64—7    
Order sequence        58—8    
Order, control theory        57—2    
Order, graphs        28—1    
Order, reducible matrices       26—9    
Ordinary least squares estimator       52—8    
Ordinary least squares solution       52—8    
Orientation       13—24 to 13—26    
Orientation preservation       56—5    
Oriented incidence matrix       28—7    
orth command, Matlab software        71—17    
Orthogonal Petrov — Galerkin projection, Arnoldi process        49—10    
Orthogonal Petrov — Galerkin projection, large-scale matrix computations        49—2    
Orthogonal Petrov — Galerkin projection, symmetric Lanczos process       49—7    
Orthogonal properties, classical groups       67—5    
Orthogonal properties, complement       5—3    
Orthogonal properties, congruence       25—10    
Orthogonal properties, Euclidean point space        66—2    
Orthogonal properties, Euclidean spaces        65—4    
Orthogonal properties, fundamentals       5—3 to 5—5    
Orthogonal properties, general properties        69—5    
Orthogonal properties, least squares solutions       39—5 to 39—6    
Orthogonal properties, linear inequalities and projections       25—10    
Orthogonal properties, projection        5—6 to 5—8    
Orthogonal properties, rank revealing decomposition        39—11    
Orthogonal properties, sign-pattern matrices       33—16 to 33—17    
Orthogonal properties, symmetric bilinear forms       12—3    
Orthogonal properties, symmetric indefinite matrices       46—14    
Orthogonal properties, symmetric matrix eigenvalue techniques        42—2    
Orthogonal properties, unitary similarity        7—1    
Orthogonality relations        68—6 to 68—8    
Orthogonalization        38—13 to 38—15    
Oscillation modes        59—2 to 59—5    
Oscillatory matrices        21—2    
Oseledets theorem        56—14 to 56—15    
Ostrowski theorem, eigenvalue problems        15—13    
Ostrowski theorem, spectrum localization        14—6 to 14—7    
Outer normal, Euclidean simplexes        66—7    
Outer, Mathematica software        73—2   73—3   73—4    
Outerplanar graphs        28—4    
OuterProductMatrix, Maple software        72—3    
Outlets        66—13    
Output Feedback        57—7   57—13    
Output space        57—2    
Output vector        57—2    
Output, algorithms and efficiency        37—16    
Output, LTI systems        57—14    
Ovals of Cassini        14—6 to 14—7    
Overall constraint length        61—12    
Overflow, floating point numbers        37—12    
P-,   and  -matrices, completion problems       35—15 to 35—17    
P-,   and  -matrices, stability       19—3    
p-Lie algebra        70—2    
p-Norm        37—2    
Packed format        74—2    
Pade approximate        11—10 to 11—11   11—12    
Pade iterations        11—12    
Pade models, dimension reduction        49—14    
Pade models, linear dynamical systems        49—15    
PadRight, Mathematica software        73—13    
Page repository        63—9    
Page, Larry        54—4   63—9   63—10    
PageRank, fundamentals        63—10    
PageRank, information retrieval        63—10 to 63—14    
PageRank, Markov chains        54—4 to 54—5    
PageRank, vector        63—11    
PageRank, Web search        63—9    
Pairwise orthogonality        7—5    
Paley — Wiener theorem        64—3 to 64—4    
Pan, V.        47—7    
Pappus’ theorem        65—8   65—9    
Parabolic subgroup        67—4    
Parabolic subgroup, BN structure        67—5    
Parallel hyperplanes        66—2    
Parallel vector subspace        65—2    
Parallelepiped, Gram matrices        66—5    
Parallelogram law, inner product spaces        5—3    
Parallelogram, Gram matrices        66—5    
Parameters, graphs        28—9 to 28—11    
Parametric programming        50—17 to 50—18    
Parametrization ofcorrelation matrices        8—8    
Parity check, matrix        61—3    
Parity check, polynomial        61—7    
Parlett and Reinsch studies        43—3    
Parlett’s recurrence        11—10   11—11    
Parseval’s Inequality        5—4    
Parter vertices        34—2 to 34—4    
Parter — Wiener theorem, given multiplicities        34—9    
Parter — Wiener theorem, multiplicities and Parter vertices        34—2    
Parter — Wiener vertex        34—2    
Partial  -matrices       35—12 to 35—13    
Partial completely positive matrices        35—10    
Partial copositive matrices        35—11    
Partial correlarandom vectors        52—4    
Partial correlation coefficient, linear prediction        64—8    
Partial correlation matrix        52—4    
Partial covariance matrix        52—4    
Partial differential equations        58—7    
Partial doubly nonnegative matrices        35—10    
Partial entry sign symmetric P-,   and  -matrices       35—19 to 35—20    
Partial entry weakly sign symmetric P-,   and  -matrices       35—19 to 35—20    
Partial Euclidean distance matrices        35—10    
Partial inverse M-matrices        35—14    
Partial M-matrices        35—12 to 35—13    
Partial matrices        35—2    
Partial matrix multiplication        47—8    
Partial nonnegative P-,   and  -matrices       35—17 to 35—18    
Partial order, checkerboard        21—9    
Partial P-,   and  -matrices       35—15    
Partial pivoting        40—18   see    
Partial positive definite matrices        35—8    
Partial positive P-matrices        35—17    
Partial positive semidefinite matrices        35—8    
Partial Schur decomposition        44—6   44—8    
Partial semidefinite ordering, positive definite matrices        8—10    
Partial semidefinite ordering, random vectors        52—4    
Partial strictly copositive matrices        35—11    
Partition, Mathematica software        73—14    
Partitioned matrices, block diagonal matrices        10—4 to 10—6    
Partitioned matrices, block matrices        10—1 to 10—3    
Partitioned matrices, block triangular matrices        10—4 to 10—6    
Partitioned matrices, Kronecker products        10—8 to 10—9    
                            
                     
                  
			 
		          
			Ðåêëàìà