| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Sornette D. — Critical phenomena in natural sciences | |
| Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 302 |
| Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation | 126, 584f, 590 |
| Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 1 |
| Bazant Z.P., Cedolin L. — Stability of structures : elastic, inelastic, fracture, and damage theories | 175, 178, 189, 240 |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 174 |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 174 |
| Berger M. — A Panoramic View of Riemannian Geometry | 116, 507 |
| Zinn-Justin J. — Quantum field theory and critical phenomena | 24 |
| Acheson David — From calculus to chaos | 33 |
| Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 83—95, 145, 149, 160, 192, 196 |
| Meirovitch L. — Methods of analytical dynamics | 173 |
| McComb W.D. — Physics of Fluid Turbulence | 154 |
| Lee J.M. — Differential and Physical Geometry | 515 |
| Schweizer W. — Numerical quantum dynamics | 35 |
| Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 343 |
| Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC | 12, 305 |
| Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers | 171—197 |
| Goldstein H., Poole C., Safko J. — Classical mechanics | 335, 370, 453, 573 |
| Dubrovin B.A., Novikov S.P. — Hydrodynamics of soliton lattices | 13 |
| Kundu P.K., Cohen I.R. — Fluid mechanics | 486 |
| Maeder R.E. — Computer science with mathematica | 360 |
| Taberling P. (ed.), Cardoso O. (ed.) — Turbulence: a tentative dictionary | 39, 53, 59, 64, 75, 78, 102, 104, 114, 118, 120, 121 |
| Leslie D.C. — Developments in the theory of turbulence | 109—111, 125, 126 |
| Peters E.E. — Fractal Market Analysis: Applying Chaos Theory to Investment and Economics | 239—240, 311 |
| Peters E.E. — Chaos and Order in the Capital Markets | 136—140, 235 |
| Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 69, 71—72, 75 |
| Wilson A.H. — Thermodynam Mechanics | 115, 119 |
| Huang K. — Statistical Mechanics | 62 |
| Pugovecki E. — Quantum mechanics in hilbert space | 2 |
| Skorokhod A.V., Prokhorov Y.V. (Ed) — Basic Principles and Applications of Probability Theory | 38, 147 |
| Hand L.N., Finch J.D. — Analytical Mechanics | 127, 203—204, 248 |
| Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 25 |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 113 |
| Kaczynski T., Mischaikow K.M. — Computational Homology | 308 |
| Heermann D.W. — Computer Simulation Methods in Theoretical Physics | 8 |
| Hall G.R., Lee — Continuous dynamical systems | 7 |
| Serre D. — Handbook of Mathematical Fluid Dynamics, Vol. 1 | 5, 10, 14 |
| Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra | xv |
| Atiyah M. — Representation Theory of Lie Groups | 167 |
| Prugovecki E. — Quantum Mechanics in Hilbert Space | 2 |
| Zung N.T. — Poisson Structures and their Normal Forms | 4 |
| Araki H. — Mathematical Theory of Quantum Fields | 12 |
| Krupkova O. — The Geometry of Ordinary Variational Equations | 63, 189 |
| Mayer J.E., Mayer M.G. — Statistical Mechanics | 38—40, 69, 228, 232, 242 |
| Yandell B. — The Honors Class: Hilbert's Problems and Their Solvers | 327, 352 |
| Raabe D. — Computational materials science | 51 ff, 73, 87 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 5 |
| Szekely G.J. — Paradoxes in probability theory and mathematical statistics | IV/1nt |
| Smith P. — Explaining chaos | 3 |
| Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 72 |
| Thaller B. — Visual quantum mechanics | 84, 179 |
| Gleick J. — Chaos. Making a new science | 49—52, 50, 134—139, 136—137, 144, 149, 206, 227, 230, 246, 261, 269, 299 |
| Wapner L. — The Pea and the Sun: A Mathematical Paradox | 180 |
| Mandic D.P., Chambers J.A. — Recurrent neural networks for prediction: learning algorithms, architectures and stability | 174 |
| Gudder S.P. — Stochastic methods in quantum mechanics | 47 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $313^2$ |
| Chorin A.J. — Vorticity and turbulence | 67 |
| Yeomans J.M. — Statistical Mechanics of Phase Transitions | 95 |
| Walecka J.D. — Fundamentals of statistical mechanics | 14ff, 17, 75, 258 |
| Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 117—122 |
| Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 49, 51 |
| Streater R.F. (Ed) — Mathematics of Contemporary Physics | 189 |
| Isihara A. — Statistical physics | 21, 38 |
| Kadanoff L.P. — Statistical physics | 6, 18 |
| Dreizler R.M., Gross E.K.U. — Density Functional Theory: An Approach to the Quantum Many-Body Problem | 120ff |
| Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 15, 19 |
| Planck M. — Introduction to Theoretical Physics | 79ff., 358ff. |
| Debye P. — Polar Molecules | 130 |
| Li M., Vitanyi P. — An introduction to Kolmogorov complexity and its applications | 559 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 478 |
| Scott A. — Neuroscience: a mathematical primer | 30, 32—33, 302, 303, 307 |
| Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 83, 293, 318 |
| Galindo A., Pascual P. — Quantum Mechanics Two | I 4 |
| Eddington A. — Relativity Theory of Protons and Electrons | 95 |
| Dirac P.A.M. — The Principles of Quantum Mechanics | 131 |
| Collins G.W. — Fundamentals of Stellar Astrophysics | 7, 15, 233, 237, 292, 295 |
| Mukamel S. — Principles of nonlinear spectroscopy | 69, 71—72, 75 |
| Shiryaev A.N. — Probability | 112, 565 |
| Lanzcos C. — The Variational Principles of Mechanics | 172, 186 |
| Hughes I.S. — Elementary Particles | 405—409 |
| Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 253, 267, 320 |
| Braunstein S.L. — Quantum computing | 4 |
| Davidson R.C. — Theory of Nonneutral Plasmas | 12, 142 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 288 |
| Wolf-Gladrow D.A. — Lattice-gas cellular automata and lattice Boltzmann models | 64 |
| Prigogine I. — Nonequilibrium statistical mechanics | 13 |
| Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 43 |
| Hilborn R.C. — Chaos and nonlinear dynamics | 276 (see also "State space") |
| Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 40 |
| Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 521 |
| Feller W. — Introduction to probability theory and its applications (volume 1) | 13 |
| Seitz F. — Modern Theory of Solids | 143 |
| Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 34 |
| Strichartz R.S. — The way of analysis | 505 |
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 2, 18 |
| Billingham J., King A.C. — Wave Motion | 328, 345 |
| Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 102 |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 338 |
| Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | 34 |
| HyperChem Computational Chemistry | 96 |
| Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions | 2 |
| Kannan D. — An introduction to stochastic processes | 186 |
| Landau L.D., Lifschitz E.M. — Fluid Mechanics. Vol. 6 | 108n. |
| Mercier A. — Analytical and canonical formalism in physics | 97, 104, 113, 117 |
| Dirac P.A.M. — The Principles of Quantum Mechanics, Vol. 27 | 131 |
| Churchland P.S., Sejnowski T.J. — The computational brain | see “State space” |
| Galindo A., Pascual P. — Quantum Mechanics One | 4 |
| Visser M. — Lorentzian wormholes. From Einstein to Hawking | 70, 92 |
| Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 4 |
| Bhatia N.P., Szego G.P. — Dynamical Systems: Stability Theory and Applications | 115 |
| Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 80 |
| Kittel C. — Introduction to solid state physics | 228 |
| Lee T.D. — Practicle physics and introduction to field theory | 93 |
| Englert B.G. (Ed) — Quantum Mechanics | 231, 262 |
| Cowan B. — Topics In Statistical Mechanics | 31, 32 |
| Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 78—84, 89—91, 122—123 |
| McComb W. D. — The Physics of Fluid Turbulence | 154 |
| Cercignani C. — Theory and Application of the Boltzman Equation | 9, 10, 20, 29, 31 |
| Elze H.-T. (ed.) — Decoherence and entropy in complex systems | 42, 43, 79, 166, 169, 176, 202, 227, 276, 342, 385 |
| Griffits D. — Introduction to elementary particles | 194—195 |
| Kenzel W., Reents G., Clajus M. — Physics by Computer | 9, 11, 120, 122 |
| Huang K. — Introduction to Statistical Physics | 62 |
| Billingsley P. — Probability and Measure | 108 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 313 |
| Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices) | 99 |
| Park D. — Introduction to the quantum theory | 325 |
| Anatol Rapoport — Two-Person Game Theory. the Essential Ideas | 150, n218 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 288 |
| Nakamura K., Harayama T. — Quantum chaos and quantum dots | 28, 82, 185 |
| Kivelson Margaret G., Russell Christopher T. — Introduction to Space Physics (Cambridge Atmospheric & Space Science Series) | 34 |
| Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 11 |
| ter Haar D. — Elements of Statistical Mechanics | 39, 74, 149 |
| Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 509 |
| Slater J.C. — Introduction To Chemical Physics | 36—43 |
| Shore S.N. — The Tapestry of Modern Astrophysics | 20 |
| Slater J.C. — Quantum Theory of Atomic Structure vol1 | 28, 53 |
| Folland G.B. — Harmonic Analysis in Phase Space | 10 |
| Mazo R.M. — Brownian Motion: Flucuations, Dynamics, and Applications | 129, 130 |
| Cherrington B.E. — Gaseous Electronics and Gas Lasers | 49, 57 |
| Bellman R. — Algorithms, graphs, and computers, Volume 62 (Mathematics in Science and Engineering) | 113 |
| Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 91 |
| Mackey M.C. — Time's arrow: the origins of thermodynamic behavior | 1 |
| Shankar R. — Principles of quantum mechanics | 88 |
| Hume-Rothery W. — Atomic Theory for Students of Metallurgy | 152 |
| Houston W.V. — Principles of Mathematical Physics | 168 |
| Siegel W. — Fields | IA5, VC7, VIIA5, B4-5, XIIC1 |
| Padmanabhan T. — Theoretical Astrophysics: Volume 1, Astrophysical Processes | 42 |
| Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 22—26, 35, 44, 61, 66, 196 |
| Cotterill R.M.J. — Biophysics: An Introduction | 48 |
| Afraimovich V.S., Hsu S.-B. — Lectures on Chaotic Dynamical Systems | 3 |
| Basdevant J.-L., Dalibard J. — Quantum Mechanics | 78, 442 |
| Prigogine I. — Proceedings of the International Symposium on Transport. Processes in Statistical Mechanics, held in Brussels,. August 27-31, 1956 | 2, 25, 31, 37, 137, 149, 200, 202 |
| Wald R.M. — Quantum field theory in curved spacetime and black hole thermodynamics | 11, 36, 57 |
| Grosche C., Steiner F. — Handbook of Feynman path integrals | 163, 164 |
| Auletta G. — Foundations and Interpretation of Quantum Mechanics | 9, 22, 158, 570 |
| Murrel J.N., Bosanac S.D. — Introduction to the Theory of Atomic and Molecular Collisions | 56 |
| Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 35—36 |
| Pathria P.K. — Statistical Mechanics | 3, 30—34, 36—40, 41, 57, 122 |
| Haller G. — Chaos Near Resonance | 1, 3 |
| Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics | 418 |
| Hercules Proceedings (Vol. I) (unknown book) | 80 |
| Nash C. — Differential Topology and Quantum Field Theory | 350 |
| Petersen K.E. — Ergodic theory | 5, 228 |
| Woodhouse N.M.J. — Geometric quantization | 1 |
| Ashcroft N.W., Mermin N.D. — Solid State Physics | 221 |
| Kotz S. — Breakthroughs in Statistics (volume 3) | 128 |
| Attard P. — Therodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation | 84 |
| Padmanabhan T. — Cosmology and Astrophysics through Problems | 15, 179, 209 |
| Mullin T. — The nature of chaos | 4—8 |
| Lee J.M. — Differential and physical geometry | 515 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 426 |
| Roads Ñ.(ed.) — Musical signal processing | 211 |
| Izu Vaisman — Lectures on the geometry of Poisson manifolds | 83 |
| Zakrzewski W.J. — Low Dimensional Sigma Models | 2, 6, 19 |
| Sniatycki J. — Geometric quantization and quantum mechanics | 5, 19, 27, 28, 30, 33, 38, 40, 42, 45, 46, 114, 120, 150, 160, 168, 180, 198 |
| Toro E.F. — Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction | 77, 377 |
| Bird G.A. — Molecular gas dynamics and the direct simulation of gas flows | 1 |
| Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group | 56 |
| Lanczos C. — Variational principles of mechanics | 172, 186 |
| Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics | 13 |
| Hermann R. — Differential geometry and the calculus of variations | 176, 178, 179, 242 |
| Gallavotti G. — Statistical Mechanics | 3, 5, 59 |
| Ilachinski A. — Cellular automata. A discrete universe | 170, 211 |
| Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 156 |
| Mayer J.E., Goeppert Mayer M. — Statistical mechanics | 38—40, 69, 228, 232, 242 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 169, 265 |
| Ashby W.R. — An introduction to cybernetics | 37 |
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 56 |
| Gallavotti G. — Foundations of fluid mechanics | 237, 241, 283, 300 |
| Dynkin E.B., Yushkevich A.A. — Markov processes; theorems and problems | 155 |
| Aleksandrov P.S. — Combinatorial topology. Volume 1 | 13 |
| Povh B., Rith K., Scholz C., Zetsche F. — Particles and nuclei. An introduction to the Physical Concepts | 48 |
| Rucker R. — Mind Tools. The Five Levels of Mathematical Reality | 187 |
| Roepstorf G. — Path integral approach to quantum physics | 68 |
| Büchner J., Dum C., Scholer M. — Space Plasma Simulation | 215 |
| Amoroso R.L. (ed.), Hunter G. (ed.), Vigier J.-P. (ed.) — Gravitation and Cosmology: From the Hubble Radius to the Planck Scale | 365 |
| Wurfel P. — Physics of Solar Cells: From Principles to New Concepts | 10 |
| Wilson W. — Theoretical physics - Relativity and quantum dynamics | 151 |
| Morse P.M. — Methods of theoretical physics | 174 |
| Dirac P.A.M. — The Principles of Quantum Mechanics | 131 |
| McQuarrie D.A. — Statistical Mechanics | 117, 402, 403, 417 |
| Siegel W. — Fields | IA5, VC7, VIIA5, B4-5, XIIC1 |
| Chaikin P., Lubensky T. — Principles of condensed matter physics | 117—22 |
| Feher L. (ed.), Stipsicz A. (ed.), Szenthe J. (ed.) — Topological quantum field theories and geometry of loop spaces | 97 |
| Greiner W., Neise L., Stöcker H. — Thermodynamics and statistical mechanics | 44, 124 |
| Tzenov S.I. — Contemporary Accelerator Physics | 21 |
| Khinchin A.Y. — Mathematical Foundations Of Quantum Statistics | 45 |
| Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 88, 169, 174 |
| Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 220, 276, 279, 280, 297, 302 |
| Sachdev P.L. — Nonlinear ordinary differential equations and their applications | 3 |
| Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 302 |
| Coffey W.T., Kalmykov Yu.P., Waldron J.T. — The Langevin equation | 25 |
| Wiggins S. — Chaotic transport in dynamical systems | 30, 33 |
| Lane S.M. — Mathematics, form and function | 110, 162, 276 |
| Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 292 |
| Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 10 |
| Leighton R.B. — Principles of Modern Physics | 92 |
| Collins G.W. — The virial theorem in stellar astrophysics | 6, 15 |
| Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 34 |
| Schutz B.F. — A first course in general relativity | 80, 176 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 393 |
| Ashby N., Miller S.C. — Principles of modern physics | 284, 450 |
| Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 16, 37 |
| Kruegel E. — The Physics of Interstellar Dust | 151ff |
| Greiner W., Neise L., Stocker H. — Thermodynamics and statistical mechanics | 44, 124 |
| Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 1, 163, 166 |
| Haag R. — Local quantum physics: fields, particles, algebras | 254ff |
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 56 |
| Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 364 |
| Zeidler E. — Oxford User's Guide to Mathematics | 483, 922 |
| Arnold V.I. — Ordinary Differential Equations | 1, 2, 3, 4, 12 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 307 |
| Chandler D. — Introduction to modern statistical mechanics | 56, 189—192, 236, 240, 242, 252, 254 |
| Israel W. — Relativity, Astrophysics and Cosmology | 56 |
| Driver R.D. — Ordinary and delay differential equations | 405 |
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 764—766 |
| Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 43—46, 54 |
| Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 43—46, 54 |
| Dynkin E.B., Kovary T., Brown D.E. — Theory of Markov processes | 26 |
| Minlos R.A. — Introduction to Mathematical Statistical Physics | 3, 6, 7, 9, 15, 19, 24, 27 |
| Binder K., Heermann D.W. — Monte Carlo Simulation in Statistical Physics | 7, 16, 20, 29 |
| Klee V., Wagon S. — Old and New Unsolved Problems in Plane Geometry and Number Theory (Dolciani Mathematical Expositions Series #11) | 73 |
| Cheng T.P., Li L.F. — Gauge theory of elementary practicle physics | 193, see "Cross-section", "Decay rate" |
| Dolan T.J. — Fusion Research: Principles, Experiments and Technology | 16 |
| Morandi G. — Statistical Mechanics: An Intermediate Course | 49 |
| ter Haar D. — Elements of Statistical Mechanics | 39, 74, 149 |
| Slater J., Frank N. — Introduction to Theoretical Physics | 79ff., 358ff. |
| Hino Y., Murakami S., Naito T. — Functional Differential Equations with Infinite Delay | 1 |
| Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 259 |
| Addison P.S. — Fractals and chaos | 123 |
| Frankel T. — The geometry of physics: An introduction | 55
Phase space, extended |
| Cercignani C. — Rarefied Gas Dynamics | 2, 11, 16 |
| Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory | 172, 261, 481 |
| Flanders H. — Differential Forms with Applications to the Physical Sciences | 163 |
| Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 68 |
| Ehrenberg W. — Electric Conduction in Semiconductors and Metals | 35 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 28, 168, 174
Phase space, volume form |
| Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 281, 282 |
| Tipler F.J. — The Physics of Immortality | 91—94, 100, 101—102, 222 |
| Park D. — Introduction to the Quantum Theory (Pure & Applied Physics) | 325 |
| Kaiser G. — Quantum physics, relativity, and complex spacetime: Towards a new synthesis | 36, 156 |
| Rivasseau V. — From Perturbative to Constructive Renormalization | 63 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 169, 265 |
| Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 43 |
| Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 37 |
| Plischke M., Bergersen B. — Equilibrium statistical physics | 30, 32, 33, 40, 51, 54 |
| Landau L., Sykes J. — Fluid Mechanics: Vol 6 (Course of Theoretical Physics) | 108n |
| Kalckar J. — Foundations of Quantum Physics I (1926 - 1932), Volume 6 | 143, 163, 172, 320, 467, 470 |
| Bruss D. (ed.), Leuchs G. (ed.) — Lectures on Quantum Information | 43, 579 |
| Liboff R.L. — Introductory quantum mechanics | 243 |
| Robert E Marshak — Meson physics | 78, 109, 227n, 286, 349 |