Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gravitation

Àâòîðû: Misner C.W., Thorne K.S., Wheeler J.A.

Àííîòàöèÿ:

Put as simply as possible, this is a book on Einstein's theory of gravity (general relativity). It is the first textbook on the subject that uses throughout the modern formalism and notation of differential geometry, and it is the first book to document in full the revolutionary techniques developed during the past decade to test the theory of general relativity.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ãðàâèòàöèîííîå âçàèìîäåéñòâèå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 1278

Äîáàâëåíà â êàòàëîã: 22.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$Post^{5/2}$-Newtonian approximation and its relationship to radiation damping      1077
4-Force, Lorentz      73
Aberration formulas for      68
Aberration in light-deflection experiments      1101
Absolute space of Newtonian theory      19 40 291f
Absolute time of Newtonian theory      291f
Abundances of elements      765
Accelerated observer in curved spacetime      327—332 (see also “Proper reference frame”)
Accelerated observer in flat spacetime      163—175
Accelerated observer in flat spacetime constraints on size of frame      168—169
Accelerated observer in flat spacetime local coordinate system of      172—176
Accelerated observer in flat spacetime measuring equipment of      164—165
Accelerated observer in flat spacetime problems of principle in defining coordinate system of      168—169
Accelerated observer in flat spacetime tetrad Fermi-Walker transported with      169—172
Accelerated observer in flat spacetime with rotating tetrad      174f
Acceleration 4-acceleration always orthogonal to 4-velocity      166 (see also “Fermi — Walker transport”)
Acceleration constant in comoving frame, for hyperbolic motion      166—167
Acceleration equivalent to gravitational field      see “Equivalence principle”
Acceleration gravity mocked up by      163ff
Acceleration of neutron in nucleus      163
Acceleration special relativity adequate to analyze      163ff
Acceleration, relative      see “Geodesic deviation”
Acceleration, “absolute,” and the equivalence principle      17
Accretion of gas onto a black hole      885
action      see “Dynamical path length”
Action at a distance, gravitational      4
Action at a distance, gravitational derived from local law      120
Action at a distance, gravitational Newton’s stricture against      41
Action principle      see «Variational principle”
Active vs. passive transformations      1140
Adiabatic index defined      692
Advanced fields, and radiation reaction      474
Advanced potential      121
Affine connection      see «Connection” “Covariant
Affine geometry characterized      191 242
Affine geometry characterized in extensor, Chap      10 (see also specific concepts such “Connection
Affine parameter, defined      211 244ff
Affine parameter, defined effect of changing, on geodesic deviation      269
Affine parameter, defined in geometric optics      575
Affine parameter, defined of geodesic      244—246
Affine parameter, defined variational principle adapted to      322—323
After, undefined term in quantum geometrodynamics      1183
Alternating symbol, in spinor analysis, defined      1152 (see also “Levi — Civita tensor “Permutation
Alternating tensor      see “Permutation tensor”
Ampere’s law. from electromagnetic 4-potential      122
Angle-effective distance vs. redshift      795f
Angular integrals, useful formulas      1001
Angular momemum operators      240
Angular momentum in curved spacetime, for an isolated source as geometric object residing in asymptotically flat region      453
Angular momentum in curved spacetime, for an isolated source conservation laws for      455 468—471
Angular momentum in curved spacetime, for an isolated source contribution of interbody matter and fields to      468
Angular momentum in curved spacetime, for an isolated source defined by way metric approaches flatness in exienso, chapter      19
Angular momentum in curved spacetime, for an isolated source defined by way metric approaches flatness in general      453ff
Angular momentum in curved spacetime, for an isolated source defined by way metric approaches flatness in linearized theory      448—451
Angular momentum in curved spacetime, for an isolated source for Kerr — Newman black hole      891
Angular momentum in curved spacetime, for an isolated source Gaussian flux integral for      460—464
Angular momentum in curved spacetime, for an isolated source measured by frame dragging      451 457
Angular momentum in curved spacetime, for an isolated source measured by gyroscope precession      451 454 457
Angular momentum in curved spacetime, for an isolated source measured by satellite-orbit precession      451 454 457
Angular momentum in curved spacetime, for an isolated source no meaning of for closed universe      457ff
Angular momentum in curved spacetime, for an isolated source total unambiguous, despite contribution of pseudotensor to      470
Angular momentum in curved spacetime, for an isolated source volume integral for      460—466
Angular momentum in flat spacetime conservation of      156f
Angular momentum in flat spacetime decomposition of total into intrinsic and orbital      158f
Angular momentum in flat spacetime density of      151 156f
Angular momentum in flat spacetime intrinsic, sets lower limit to size      162
Angular momentum in flat spacetime parallel transport of and Thomas precession      175—176
Angular momentum in flat spacetime total      156—159
Angular momentum in Newtonian theory, flux integral for      470
Angular momentum, orbital, for test particles in Kerr — Newman geometry      898f
Angular momentum, orbital, for test particles in Schwarzshild geometry      656ff
Angular velocity extended to four dimensions      170f
Angular velocity in context of spinor analysis      1139 1142
Angular velocity of orbital motion in Kerr — Newman geometry      893ff
Angular velocity rotating tetrad, vs. Fermi — Walker tetrad      174f
Anholonomie basis      204 210 239
Anisotropy energy      802 807
Antisymmetrization. of tensor      83
Asymptotically flat spacetime geometry      453
Asymptotically flat spacetime geometry conformal treatment of infinity      917—921
Asymptotically flat spacetime geometry form of far from stationary fully relativistic source      456f
Asymptotically flat spacetime geometry form of in linearized theory      448ff
Asymptotically flat spacetime geometry in evaluation of Gaussian flux integral      462f
Asymptotically flat spacetime geometry key to defining mass and angular momentum      457ff
Asymptotically flat spacetime geometry “I weigh all that’s here”      475
Automatic conservation of source      404 408f 417
Background geometry defined by limiting procedure      479—480 (see also “Gravitational waves shortwave
Backscatter of waves off curvature      864f 869ff 957
Bar operation in linearized theory      436ff
Bar operation in shortwave formalism      967
Baryons conservation law for      see under “Conservation laws”
Baryons mass density of      1069 1074
Baryons number density of      558
Base metric, in time-symmetric initial-value problem      535
Basis 1-forms as coordinate gradients      60ff
Basis 1-forms connection coefficients for      209 215 258f
Basis 1-forms dual to basis vectors      60f 202f 232 234
Basis 1-forms transformation laws for      68 203
Basis forms 2-forms and dual labeling thereof      151
Basis forms 3- and 4-forms for volume integrals      150
Basis vectors      50
Basis vectors as differential operators      229f
Basis vectors commutation coefficients for      204
Basis vectors connection coefficients for      209 258f
Basis vectors coordinate basis      230f (see also “Proper reference frame tetrad”)
Basis vectors coordinate vs. general basis      201—203
Basis vectors dual to basis 1-forms      60ff 232
Basis vectors in extenso      201—207
Basis vectors transformation laws for      68 201 203 230f
Bell bongs      55f 60 99 202 231
Bertotti — Robinson electromagnetic universe      845
Betti numbers, characterize connectivity      221
Bianchi identities applied to equations of motion      473
Bianchi identities as automatically fulfilled conservation law      405
Bianchi identities expressed in terms of curvature 2-form      362
Bianchi identities from coordinate-neutrality of Hilbert — Palatini variational principle      503
Bianchi identities in terms of boundary of a boundary, Chap      15
Bianchi identities model for, in geodesic identity      318
Bianchi identities proved      287
Bianchi identities required because geometrodynamic law-must not predict coordinates      409
Bianchi identities stated      221f 224 325f
Big Dipper, shape unaffected by velocity of observer      1160—1164
Binary generation of gravitational waves by      986 988ff 995
Binary star black holes as members of      886f
Binding eneray of orbits around black holes      885 911
Birkhoff’s theorem for Reissner — Nordstrem geometry      844ff
Birkhoff’s theorem for Schwarzschild geometry      843f
Bivector defined      83
Bivector in surface of Whitaker’s calumoid      125
Black body      see under “Radiation”
Black hole      884—887
Black hole astrophysical aspects of      883—887
Black hole baryon number transcended by      876
Black hole brief summary of properties      620
Black hole dynamical processes      884ff
Black hole dynamical processes can never bifurcate      933
Black hole dynamical processes collision and coalescence of      886 924 939
Black hole dynamical processes gravitational waves from hole-hole collisions      886 939 982
Black hole experimental tests of general relativity using      1047 (see also “Black-hole dynamics laws gravitational”;
Black hole gravitational waves from collapse that forms      1041
Black hole history of knowledge of      620 623
Black hole in extenso, Chap      33
Black hole interactions with matter      885f
Black hole interactions with matter change of parameters of hole due to infall of particles      904—910 913
Black hole interactions with matter Cygnus X-I as an examplar of ix gravitational waves from matter falling into      885 904 982f 986
Black hole interactions with matter extraction of energy from      906 908
Black hole Kerr — Newman geometry as unique external field      863 875—877 esp
Black hole lepton number transcended by      640 876
Black hole mechanisms of formation      883—884
Black hole why deserve their name      872—875
Black hole “hair on”      43 863 876
Black-hole dynamics, laws of      887f (see also “Second law of black-hole dynamics”)
Boost      67ff
Boundary of a boundary is zero      364—370
Boundary of a boundary is zero automatically conserve’s Cartan’s moment of rotation      377—378
Boundary of a boundary, route to Bianchi identities, Chap      15
Boundary of the boundary of a 4-simplex      380—381
Boundary operator      96
Boyer — Lindquist coordinates      877—880
Brackets, round and square, define symmetry      126
Bragg reflection, related to 1-forms      232
Brans — Dicke theory of gravity      see “Gravitation theories
Brill — Hartle averaging process      970
Brownian forces      1038
Bubble-time derivative      497
Buffer zone, in analysis of departures from geodesic motion      476—480
Buoyant force      606
Calumoid, Whitaker’s. related to flux integrals      125
Canonical structure, metric and symplectic structure      126
Canonical variables, in Hamiltonian mechanics      125
Cartan structure equations      359
Carter’s fourth constant      899
Causal relationships in flat spacetime      48 51
Causal structure of curved spacetime      922ff
Causal structure of curved spacetime future horizons      923—924
Causal structure of curved spacetime global structure of horizons, analysis of      926—931 (see also “Global techniques” “Horizons”)
Causal structure of curved spacetime global structure of horizons, theorems about      924—925
Causality, principle of and the mechanism of radiation      110
Caustics, of a horizon      925
Cavendish experiment      1121f
Cavendish gravitational constant      1121ff
Cavendish gravitational constant dependence on chemical composition of gravitating bodies      1125
Cavendish gravitational constant dependence on velocity relative to “preferred universal rest frame”      1123—1124
Cavendish gravitational constant variations in, cause deviations from geodesic motion      1127—1128
Center of mass      161
Centrifugal forces      294
Centrifuge, in idealized redshift experiment      63f
Centroid      161
Cepheid variable stars pulsation of      632
Cepheid variable stars pulsation of as distance indicators      786
Cepheid variable stars pulsation of confused with H II regions in Hubble’s work      709
Cepheid variable stars pulsation of confusion resolved by Baade      710 760
Cepheid variable stars pulsation of period-luminosity relation discovered      758
Chain rule abstract      314—315
Chain rule for covariant derivative      252 257f 260f
Chandrasekhar limit      619
Charge as lines of force trapped in the topology of space      221 368 1200f
Charge as measured by tubes of force, in 2-form representation      107
Charge conservation      see “Conservation laws charge”
Charge density-current 3-form      113f 151
Charge density-current 4-vector, Lorentz transformation of      68
Charge density-current Dirac’s representation, for particle in arbitrary motion      120f
Charge density-current dual representations      88 97f
Charge evaluated from flux integral      98
Charge of closed universe, meaningless integral for      457—458
chemical potential      see under “Thermodynamics”
Chinese historical records of Crab supernova      11
Classical mechanics, correspondence with quantum mechanics      413
Classical theory, conceives of geometry and fields as measureable      13
Clock “paradox”      167
Clocks as tools in parametrization of geodesies      246
Clocks bad vs. good      26—27
Clocks ideal built on geodesies      396—399
Clocks ideal defined      393
Clocks ideal in Newton — Cartan theory      301
Clocks infinite sequence of needed as one approaches a singularity      813f
Clocks influence of acceleration on      164f 327 396
Clocks influence of tidal forces on      396
Clocks specific types of      28 393—396
Clocks stability of      28 1048
Closed form      114 (see also “Forms differential”)
Closure of universe      see “Cosmological models”)
Clusters of galaxies origin of      766 769f
Clusters Virgo as source of gravitational waves      1042
Cold, catalyzed matter      624—626
Collapse, gravitational in one and two dimensions      867f
Collapse, gravitational of a spherical shell of dust      555—556
Collapse, gravitational of a spherical star analyzed by examining exterior geometry      846—850 857
Collapse, gravitational of a spherical star comovins coordinates for      857
Collapse, gravitational of a spherical star decay of luminosity of      847 850 872
Collapse, gravitational of a spherical star Eddington — Finklestein diagram for      849 864 873
Collapse, gravitational of a spherical star embedding diagrams for      855f
Collapse, gravitational of a spherical star equations governing adiabatic collapse      858f
Collapse, gravitational of a spherical star Kruskal diagram for      848 855
Collapse, gravitational of a spherical star models with zero pressure      859
Collapse, gravitational of a spherical star models with zero pressure and uniform density      851—856 859
Collapse, gravitational of a spherical star redshift of radiation from      847 849f 872
Collapse, gravitational of a spherical star surface of last influence      873f
Collapse, gravitational realistic      862f 883f
Collapse, gravitational realistic, at three levels: universe, black hole, quantum fluctuations      1201
Collapse, gravitational realistic, black box model of      1209 1213—1217
Collapse, gravitational realistic, collapse, pursuit, and plunge scenario      629
Collapse, gravitational realistic, creation of Kerr — Newman black hole by      882—883
Collapse, gravitational realistic, evolution of small perturbations from spherical symmetry      864—866
Collapse, gravitational realistic, gravitational waves emitted during      1041
Collapse, gravitational realistic, importance of and philosophical implications of      437 1196f
Collapse, gravitational realistic, in a dense star cluster      884
Collapse, gravitational realistic, inevitability of for massive stars      819
Collapse, gravitational realistic, issue of the final state      940 1196f
Collapse, gravitational realistic, Price’s theorem      866
Collapse, gravitational realistic, triggering of in late stages of stellar evolution      627 862
Collapsed star      see “Neutron star Black
Collisions of particles in flat spacetime      19 69f
Comma-goes-to-semicolon rule      387—392 (see also “Equivalence principle”)
Commutation coefficients of basis vectors      204 243 314
Commutation coefficients of basis vectors calculated by exterior derivative of basis 1-forms      358f
Commutation coefficients of basis vectors for rotation group      243
Commutation, of observables on spacelike hypersurface      554
Commutator as closer of quadrilaterals      236 278
Commutator for normal and tangent to spacelike slice      517
Commutator for rotation group      332
Commutator Jacobi identity for      240
Commutator of covariant derivatives      276 389ff
Commutator of tangent vectors      204 206f 235—240
Commutator pictorial representation of      236—237
Compatibility of metric and covariant derivative      313ff 353f
Complexion, of electromagnetic field      108 482
Component manipulations      see “Index manipulations”
Component notation, to remove ambiguity of slots      84
Components of 1-forms. introduced      61
Components of curvature tensor, introduced      34 37 40 42
Components of tensors, introduced      75
Components of vectors, introduced      8—10 50—51
Concepts of physics, defined by theory itself      71f
Conduction of heat      567
Conformal curvature tensor      see under “Curvature formalism
Conformal part of 3-geometry, in York’s formulation of initial-value problem      540—541
Conformal transformation of infinity      See under “Infinity”
Connection coefficients as components of covariant derivative      208f 256 261—262
Connection coefficients calculated from metric and commutators      210 216 314
Connection coefficients illustrated by great-circle navigation      212
Connection coefficients specialized to a coordinate basis called “Christoffel symbols”      210
Connection coefficients specialized to a coordinate basis contraction of in terms of metric      222
Connection coefficients specialized to a coordinate basis formula for, from Palatini variational principle      502
Connection coefficients specific cases of for 2-sphere      341 345
Connection coefficients specific cases of for flat 3-geometry, polar coordinates      213
Connection coefficients specific cases of for Newton — Cartan spacetime      291f 294 298
Connection coefficients specific cases of for plane, in polar coordinates      213 263
Connection coefficients specific cases of for proper reference frame of accelerated observer      330f
Connection coefficients specific cases of for Riemann normal coordinates      286f
Connection coefficients specific cases of for rotation group      264
Connection coefficients summarized      223
Connection coefficients symmetries of      213—214
Connection coefficients transformation law for      262
Connection coefficients unique, to make geodesies agree with straight lines of local Lorentz geometry      314f
Connection, measured by light signals and free particles      324 (see also “Covariant derivative”)
Connectivity at small distances      221
Connectivity charge as trapped lines of force      221 368 1200f
Connectivity of spacetime, in classical differential geometry      1204—1205
Conservation laws baryon number      558f 563ff
1 2 3 4 5 6 7 8 9 10
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå