Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gravitation

Àâòîðû: Misner C.W., Thorne K.S., Wheeler J.A.

Àííîòàöèÿ:

Put as simply as possible, this is a book on Einstein's theory of gravity (general relativity). It is the first textbook on the subject that uses throughout the modern formalism and notation of differential geometry, and it is the first book to document in full the revolutionary techniques developed during the past decade to test the theory of general relativity.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ãðàâèòàöèîííîå âçàèìîäåéñòâèå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 1278

Äîáàâëåíà â êàòàëîã: 22.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Spinors algebra of      1151—1155
Spinors analyze appearance of night sky      1160—1164
Spinors and orientation-entanglement relation      1148ff
Spinors as tool in gravitation theory      1164f
Spinors conjugate complex      1150
Spinors correspondence with vectors      1150ff
Spinors defined by their law of transformation      1148ff
Spinors flagpole plus flag plus orientation-entanglement relation      1157—1160
Spinors general account, Chap      41
Spinors in curved spacetime      1164
Spinors of higher rank      1151
Spinors spin space and basis spinors      1156
Spinors spinor equivalent of tensors      1153f
Spinors with dotted indices      1150
Standard candle      789
Standard hot big-bang cosmological model      see under “Cosmology”
Star clusters, relativistic      621 635
Star clusters, relativistic analysis of structure      679—683
Star clusters, relativistic collapse of      884
Star clusters, relativistic creation by evolution of a galactic nucleus      634
Star clusters, relativistic equations of structure summarized      683f
Star clusters, relativistic possible roles in quasars and galactic nuclei      634 687
Star clusters, relativistic relativistic instability in      621 686f
Star clusters, relativistic specific models isothermal, spherical      685ff
Star clusters, relativistic specific models isotropic      683f
Star clusters, relativistic specific models self-similar      683
Star clusters, relativistic specific models with purely circular orbits      683
Star operations      see “Duality”
Starquake      628
Stars      see “Binary stars” “Cepheid “Neutron “Supermassive “White
Stars, evolution into final state      621 624 627—629
Stars, Newtonian equations of structure      601—602 605ff
Stars, Newtonian gravitational energy      606—607
Stars, Newtonian pulsation theory dynamical analysis      697f
Stars, Newtonian pulsation theory virial-theorem analysis      1079f
Stars, Newtonian pulsation theory volume-averaged analysis      630f
Stars, Newtonian uniform-density model      609
Stars, relativistic, nonrotating boundary conditions for      694
Stars, relativistic, nonrotating collapse of      see “Collapse” “Gravitational”
Stars, relativistic, nonrotating eigenvalue problem for normal modes      695f
Stars, relativistic, nonrotating Newtonian limit      697f
Stars, relativistic, nonrotating nonradial pulsation of      984f
Stars, relativistic, nonrotating post-Newtonian limit      698f 1080
Stars, relativistic, nonrotating radial pulsation of dynamic analysis      688—699
Stars, relativistic, nonrotating specific models Fermi-gas model with $\rho_c=\infty$      615ff
Stars, relativistic, nonrotating specific models how to construct      608f
Stars, relativistic, nonrotating specific models numerical models for white dwarfs and neutron stars      625ff 696
Stars, relativistic, nonrotating specific models Schwarzschild’s uniform-density model      609—612
Stars, relativistic, nonrotating stability of critical adiabatic index for radial pulsations      697ff
Stars, relativistic, nonrotating stability of pulsational instability in massive stars      632
Stars, relativistic, nonrotating stability of relativistic instability      605 697ff “Neutron “Supermassive
Stars, relativistic, nonrotating structure curvature tensors for      360f
Stars, relativistic, nonrotating structure embedding diagrams for      613—615 617
Stars, relativistic, nonrotating structure equations of structure derived      600—606
Stars, relativistic, nonrotating structure equations of structure summarized      608—609 689
Stars, relativistic, nonrotating structure external gravitational field      see “Schwarzschild geometry”
Stars, relativistic, nonrotating structure in extensor      Chaps. 23 24
Stars, relativistic, nonrotating structure isotropic coordinate system      595
Stars, relativistic, nonrotating structure mass-energy inside radius r      602ff
Stars, relativistic, nonrotating structure monotonicity of r      612—613 615
Stars, relativistic, nonrotating structure must be spherical      593
Stars, relativistic, nonrotating structure must have 2m/r<1      605 612f 615
Stars, relativistic, nonrotating structure Newtonian limit of equations of structure      601—602 605ff
Stars, relativistic, nonrotating structure Newtonian limit of gravitational potentials      595
Stars, relativistic, nonrotating structure parameters describing matter      597—600
Stars, relativistic, nonrotating structure proper reference frame of fluid      598
Stars, relativistic, nonrotating structure Schwarzschild coordinate system      597
Stars, relativistic, nonrotating structure total number of baryons      606
Stars, relativistic, rotating rapidly rotating disks      621
Stars, relativistic, rotating slowly rotating, spherical stars      699
Stars, relativistic, rotating stabilizing effects of rotation      633f
Static limit      879ff 894
Stationary gravitational field hydrostatic equilibrium in      566
Stationary gravitational field thermal equilibrium in      568
Steady coordinates      964
Steady-state cosmology      745 750 770
Stokes theorem, generalized      96f 127
Stokes theorem, generalized applications      96f 125 378
Stokes theorem, generalized content in pictures      117
Stokes theorem, generalized Gauss’s theorem as special case      97 150f
Stress      see “Stress-energy tensor”
Stress-energy pseudotensor      see “Pseudotensor”
Stress-energy tensor as functional derivative of Lagrangian      485 503ff
Stress-energy tensor as machine to reveal energy density, momentum density, and stress      131f
Stress-energy tensor in extensor      Chap. 5
Stress-energy tensor physical interpretation of components      137f
Stress-energy tensor specific form for electromagnetic field      139—140 480ff
Stress-energy tensor specific form for geometric-optics waves      579
Stress-energy tensor specific form for gravitational field in general relativity      see “Pseudotensor”
Stress-energy tensor specific form for gravitational field in spin-2 theory      425
Stress-energy tensor specific form for nearly Newtonian fluid      152 154
Stress-energy tensor specific form for perfect fluid      132 140
Stress-energy tensor specific form for photons in geometric optics limit      579f
Stress-energy tensor specific form for scalar field      504f
Stress-energy tensor specific form for spherical star cluster      680 682
Stress-energy tensor specific form for stressed medium with no heat flow      1086f
Stress-energy tensor specific form for swarm of particles (kinetic theory)      138f 589f 680 682
Stress-energy tensor specific form for viscous fluid with heat flowing through it      567
Stress-energy tensor summarized      131—132
Stress-energy tensor symmetry of      141—142
Stress-energy tensor vanishing divergence      152
Structure      (see also “Global techniques Horizons”
Structure Cartan’s equation of      378
Structure constants, of rotation group      243
Structure deformation of      530
Structure differentiable      242
Structure symplectic, of Hamiltonian mechanics      125—126
Sum over histories      see “Feynman’s sum over histories”
Sum-for-inertia      see “Mach’s principle”
Summation convention, Einstein’s      9
Sun      (see also “Experimental tests of general relativity”)
Sun effect on tides      44
Sun gravitational field in PPN formalism      1097ff
Sun mass deduced from planetary orbits      638
Sun observed redshift of light from      1058ff
Sun quadrupole moment      1112f 1115f 1053f
Sun radiation flux negligible compared to pressure      1075
Sun velocity relative to Galaxy, local group, and universe      1114
Super-Hamiltonian contrasted with Hamiltonian      488f
Super-Hamiltonian for mixmaster cosmology      809—813
Super-Hamiltonian for test-particle motion in combined electromagnetic and gravitational fields      897f
Super-Hamiltonian for test-particle motion in electromagnetic field      488f
Super-Hamiltonian for test-particle motion in gravitational field      654
Supermassive stars      620f 634
Supermassive stars adiabatic index in      633
Supermassive stars convection in      600
Supermassive stars entropy constant in      600
Supermassive stars possible roles in quasars and galactic nuclei      634 (see also “Neutron stars” “White
Supermassive stars pulsational instability in      632—633
Supermassive stars relativistic instability in      605 620 633f
Supermassive stars rotation as a stabilizer      633—634
Supernova      619 622
Supernova as source of gravitational waves      982 987 1040 1042
Supernova Crab nebula created by, ii      619f
Supernova theoretical scenario for      628
Superspace      1180—1183
Superspace as starting point for Einstein’s geometrodynamic law      423
Superspace conserved probability current in      1189
Superspace mixmaster version (“minisuperspace”)      806
Superspace of 2-geometries      221
Superspace quantum fluctuations      1180
Superspace spread-out wave versus wave packet      1185
Superspace truncated, skeleton version      1181
Surface integral      see “Integration”
Surface of last influence      873f
Symmetries of spacetime      see “Killing vector fields”
Symmetries, more subtle than symmetry and antisymmetry      86
Symmetrization, of tensor      83
Symmetry of tensor, indicated by round or square bracket      126
Symmetry operations as tensors      126 128—129
Synchronous coordinate system      717 (see also “Gaussian normal coordinate system”)
Systeme International (SI) second      28
Tails of waves in curved spacetime      957 864f 869ff
Tangent space      205 227—231
Tangent space at neighboring points, linked      246f 252
Tangent vector      see “Vector tangent”
Taub-NUT space      940
TCP, experimental tests of      1054
Teichmueller space      221
Temperature      see “Thermodynamics”
Temperature, redshift of      568 588 685
Tensor density      501f
Tensors algebraic operations extended to general frames      201—207 233f
Tensors ambiguity of slots removed by component notation      84
Tensors components of in general frame      201—204 312
Tensors components of in Lorentz frame      75f
Tensors covariant derivative introduced      208ff 257—261
Tensors Lie derivative introduced      517
Tensors machine-with-slots definition      22 74ff 131 133f 233f 310f
Tensors operations on, introduced in global Lorentz frame addition      76
Tensors operations on, introduced in global Lorentz frame basis tensors      76
Tensors operations on, introduced in global Lorentz frame contraction      82 84
Tensors operations on, introduced in global Lorentz frame divergence      82
Tensors operations on, introduced in global Lorentz frame duality      85 87 88
Tensors operations on, introduced in global Lorentz frame gradient      81—82 84
Tensors operations on, introduced in global Lorentz frame indices, raising and lowering      75—76
Tensors operations on, introduced in global Lorentz frame integration      147ff
Tensors operations on, introduced in global Lorentz frame multiplication by scalar      76
Tensors operations on, introduced in global Lorentz frame symmetrization, antisymmetrization      83 85f 126
Tensors operations on, introduced in global Lorentz frame tensor product      76
Tensors operations on, introduced in global Lorentz frame transpose      83
Tensors operations on, introduced in global Lorentz frame wedge product      83
Tensors rank, defined      75f 234
Tensors spinor representation of      1153—1155
Tensors summaries of formalism for manipulating in curved manifold with metric      203f 223f
Tensors summaries of formalism for manipulating in global Lorentz frame      85
Tensors summaries of formalism for manipulating in manifold without metric      233f
Tensors, completely antisymmetric      see “Forms differential”
Tensors, first rank      see “Vectors” “Forms 1-forms”
Tensors, second-rank symmetric, decomposition of      947
Test particle, freely falling, defines geodesic      196
Test particles more needed to explore Riemann curvature      72
Test particles three needed to explore Lorentz force      72
Tests of general relativity      see “Experimental tests of general relativity”
Tetrad carried by a uniformly accelerated observer      169—170
Tetrad carried by accelerated observer      328—332
Tetrad in Fermi — Walker transport      170—171
tetrahedron      307 309
Theories of gravitation      see “Gravitation theories
thermal conductivity      see “Heat conduction”
Thermal equilibrium in a stationary gravitational field      568
Thermodynamics      (see also “Hydrodynamics”)
Thermodynamics basic concepts defined adiabatic index      692
Thermodynamics basic concepts defined baryon number density      558
Thermodynamics basic concepts defined chemical free energy      561
Thermodynamics basic concepts defined chemical potential      558 561 562
Thermodynamics basic concepts defined density of total mass-energy      558
Thermodynamics basic concepts defined entropy 4-vector      567
Thermodynamics basic concepts defined entropy per baryon      558
Thermodynamics basic concepts defined equations of state      560
Thermodynamics basic concepts defined heat-flux 4-vector      567
Thermodynamics basic concepts defined multicomponent fluid      558
Thermodynamics basic concepts defined physical free energy      561
Thermodynamics basic concepts defined pressure      558
Thermodynamics basic concepts defined primary thermodynamic potential      561
Thermodynamics basic concepts defined simple fluid      558
Thermodynamics basic concepts defined temperature      508
Thermodynamics basic concepts defined viscosity coefficients      567
Thermodynamics basic references      557n 568
Thermodynamics extension of formalism when nuclear burning occurs      558
Thermodynamics in exienso      557—562
Thermodynamics laws and equations of      (see also “Conservation laws baryons”;
Thermodynamics laws and equations of law of heat conduction      559
Thermodynamics laws and equations of Maxwell relations      561 564
Thermodynamics some applications and processes chemical potential for an ideal Fermi gas      565
Thermodynamics some applications and processes injection energy      561f
Thermodynamics some applications and processes pair production at high temperatures      558
Thermodynamics some applications and processes shock waves      559
Thin-sandwich conjecture      534
Thomas precession      175—176 1118 1146f
Three-geometry      (see also “Initial value Spacelike
Three-geometry as carrier of information about time      488 533
Three-geometry conformal in York’s formulation of initial-value problem      540—541
Three-geometry conformal pure spin-2 representation via York curvature      541
Three-geometry fixed at surface in ADM formulation      522
Three-geometry of initial and final spacelike hypersurfaces      488
Three-geometry YES vs. NO vs. quantum probability for      1184f
Three-plus-one split of spacetime      486 505
Three-plus-one split of spacetime 4-metric vs. 3-metric in      508
Three-plus-one split of spacetime choice of slicing doesn’t matter      526
Three-plus-one split of spacetime sandwiches and rigidification      506
Three-plus-one split of spacetime via 3-metric plus lapse and shift      506—507
Tidal forces      823 860ff Geodesic
Tides, produced by sun and moon      38 44 391f
Time      (see also “Bubble-time derivative Clocks Day”
Time defined so motion looks simple      23—29
Time dilation, experimental tests of      1054f
Time end of in gravitational collapse      Chap. 44
Time imaginary coordinate for, not used      51
Time many-fingered      495 498 527
Time Newtonian universal      40 299
Time proper      see “Interval”
Time standards of      23—29
Tired light      775
Tolman universe      733
Topology of spacetime      (see also “Differential topology”)
Topology of spacetime Einstein vs. flat space views of      437
Topology of spacetime various possibilities for Friedmann cosmological models      725
Topology of spacetime various possibilities for Schwarzschild geometry      837—840
Topology, point-set      241 926n
Torque of sun and moon on Earth      391—392
Torsion not present in affine connection if equivalence principle is valid      250
Torsion possible incorporation into general relativity      1049 1068
Torsion vanishes in Riemannian geometry      378
Tortoise coordinate      663 665—666
Torus, three-dimensional      284 725
Transformations active vs. passive      1140
Transformations of connection coefficients      262
Transformations of spinors      1149f
Transformations of tensors      201—204
Transpose of tensor      83
Transverse-traceless gauge in a curved background      969
Transverse-traceless gauge in linearized theory      946—950
Trapped surface      934 936
Trivector, defined      83
Tubes of force      102 114
Twin “paradox”      167
Twistors      937
Two-form      see “Forms differential”
Two-length-scale expansion      571f
Unified theory of electricity and gravitation, Riemann’s unsuccessful search for      32 221
Uniqueness of free fall (“weightlessness”, “weak equivalence principle”)      13—19 197 1050—1054
Uniqueness of free fall (“weightlessness”, “weak equivalence principle”) contained in Einstein’s 1911 equivalence principle      17
Uniqueness of free fall (“weightlessness”, “weak equivalence principle”) Einstein’s 1908 formulation      5
Uniqueness of free fall (“weightlessness”, “weak equivalence principle”) experimental tests of      13—17 1051—1054
Uniqueness of free fall (“weightlessness”, “weak equivalence principle”) formulation of this book      1050
Universal Time (UT0, UT1, UT2)      28
Universe      see “Cosmological models Cosmology”
Variational principles for geometrodynamics Arnowitt, Deser, Misner exploited      526
Variational principles for geometrodynamics Arnowitt, Deser, Misner in simplest form      521
Variational principles for geometrodynamics Arnowitt, Deser, Misner specialized to mixmaster cosmology      808f
Variational principles for geometrodynamics Hilbert’s      434
Variational principles for geometrodynamics Hilbert’s grounded in quantum character of physics      499f
Variational principles for geometrodynamics Hilbert’s in brief      418 485
Variational principles for geometrodynamics Hilbert’s in exienso      Chap. 21
Variational principles for geometrodynamics Hilbert’s in space-plus-time split      519f
Variational principles for geometrodynamics Hilbert’s put into ADM form      520
Variational principles for geometrodynamics Hilbert’s Sakharov renormalization of      426
Variational principles for geometrodynamics Hilbert’s scalar curvature as integrand in      491 519
Variational principles for geometrodynamics Hilbert’s what fixed at limits      485
1 2 3 4 5 6 7 8 9 10
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå