Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gravitation

Àâòîðû: Misner C.W., Thorne K.S., Wheeler J.A.

Àííîòàöèÿ:

Put as simply as possible, this is a book on Einstein's theory of gravity (general relativity). It is the first textbook on the subject that uses throughout the modern formalism and notation of differential geometry, and it is the first book to document in full the revolutionary techniques developed during the past decade to test the theory of general relativity.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ãðàâèòàöèîííîå âçàèìîäåéñòâèå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 1278

Äîáàâëåíà â êàòàëîã: 22.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Variational principles for geometrodynamics Hilbert’s, by Palatini’s method analogy with electrodynamics      495—498
Variational principles for geometrodynamics Hilbert’s, by Palatini’s method analogy with mechanics      491—495
Variational principles for geometrodynamics Hilbert’s, by Palatini’s method connection as independently variable in      492
Variational principles for geometrodynamics Hilbert’s, by Palatini’s method sketched      491
Variational principles for geometrodynamics in Regge calculus      1170
Variational principles for geometrodynamics in shortwave approximation      927f
Variational principles for geometrodynamics in superspace formulation      1186
Variational principles for geometrodynamics thin-sandwich, for lapse and shift      538
Variational principles for spin-0, spin-l, and spin-2 theories of gravity in flat spacetime      178—181
Variational principles for test particle motion extremal proper time      314—324
Variational principles for test particle motion “dynamic” principle      322f
Vector, $\rho$-vector      91
Vector, tangent commutator      204
Vector, tangent comparison by parallel transport      245—263
Vector, tangent correspondence of, with spinors      1150ff
Vector, tangent covariant components from spinor analysis      1153
Vector, tangent definitions of as arrow      49
Vector, tangent definitions of as derivative of point      49 205 226—229
Vector, tangent definitions of as directional derivative operator      205 227—230
Vector, tangent definitions of as parametrized straight line      49
Vector, tangent definitions of manipulations summarized      see “Tensor”
Vector, tangent formalism of, in global Lorentz frames, correspondence to 1-form      58ff
Vector, tangent formalism of, in global Lorentz frames, defining directional derivative      59f
Vector, tangent formalism of, in global Lorentz frames, from 1-form by raising index      62
Vector, tangent formalism of, in global Lorentz frames, test for linear dependence      83
Vector, tangent formalism of, in global Lorentz frames, timelike, null, and spacelike      53
Vector, tangent formula for determining components of      232
Vector, tangent introduced      8—13
Vector, tangent transformation laws for      230ff
Vector, tangent transition to curved spacetime      201—207 230f
Vectors, three-dimensional (spatial), introduced      64
‘Expansion”, of a congruerice of world lines      565f
“Continuous-creation”      745 750 770
“Curvature coupling” in equivalence principle      389—392
“Curvature parameter” of Friedmann cosmologies      721
“Density parameter” of universe      772 796f
“Differential”, of differential calculus, interpreted as a 1-form      63
“Differential”, of differential calculus, interpreted as p-form      160—161
“Differential”, of differential calculus, rigorous version of      62
“d”, three usages of this differential symbol      95—96
“Expansion”, of a bundle of null rays      582 1165
“Foamlike” character of space      419 480 1190—1194 1202
“Future of”      see “Causal relationships”
“Glory,” in particle scattering      670
“Gravitational field” in general relativity theory as term with many meanings and none      399f
“Gravitational field” in general relativity theory contribution of to standard stress-energy tensor, specifically excluded      131
“Gravitational field” in general relativity theory covariant derivative and connection coefficients as      387 399—400
“Gravitational field” in general relativity theory metric as      399f
“Gravitational field” in general relativity theory Riemann curvature as      399—403
“Gravitational field” in general relativity theory spacetime geometry as      399—400
“Hammer-blow waves” defined      1019
“History of geometry,” denned      418—419
“Kepler density” from satellite period      44
“Magnitude, absolute,” defined      786
“Magnitude, apparent.” defined      782
“Mass-energy inside radius r”      602ff 858f
“Moment of time” means “spacelike hypersurface”      713—714 1184
“Neutral relationship to.”      see “Causal relationships”
“Past of.”      see “Causal relationships”
“Peeling theorem,” in radiation theory      1165
“Reprocessing” of universe      1209 1213—1217
“Rotation” of a field of 1-forms      123f
“Rotation” of a field of 4-velocities      566
“Rotation” of rays, in spinor language      1165
“Self-energy,” infinite      474
“Self-force”      474
“Sense”      see “Orientation”
“Shear” in spinor language      1165
“Shear” of a bundle of null rays      582
“Shear” of a congruence of world lines      566
“Slot” in machine concept of tensor      see “Tensor”
“Spacelike relationship to”      see “Causal relationships”
“Steady flux of waves”, defined      1019
“Test body”, defined      1050n
1 2 3 4 5 6 7 8 9 10
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå