Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gravitation

Àâòîðû: Misner C.W., Thorne K.S., Wheeler J.A.

Àííîòàöèÿ:

Put as simply as possible, this is a book on Einstein's theory of gravity (general relativity). It is the first textbook on the subject that uses throughout the modern formalism and notation of differential geometry, and it is the first book to document in full the revolutionary techniques developed during the past decade to test the theory of general relativity.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ãðàâèòàöèîííîå âçàèìîäåéñòâèå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 1278

Äîáàâëåíà â êàòàëîã: 22.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Conservation laws baryon number applied to collapsing stars      858
Conservation laws baryon number applied to pulsating stars      691f
Conservation laws baryon number in PPN formalism      1088
Conservation laws electric charge      369f
Conservation laws electric charge as consequence of dd = 0      118
Conservation laws electric charge differential formulation of      88 568 570
Conservation laws electric charge integral formulation from differential via Stokes theorem      98 156
Conservation laws energv –momentum $(\nablcdot\gamma)$ in flat spacetime      132 146 152—155
Conservation laws energv –momentum $(\nablcdot\gamma)$ in terms of generalized exterior derivative      362f
Conservation laws energv –momentum $(\nablcdot\gamma)$ integral formulation in flat spacetime      142—146
Conservation laws energv –momentum $(\nablcdot\gamma)$ tested in elementary particle physics      19
Conservation laws energv –momentum $(\nablcdot\gamma)$ to be interpreted as automatic, via “wiring up” to geometry      364 367f 371 404—407
Conservation laws energv –momentum $(\nablcdot\gamma)$ transition to curved spacetime      386f 390
Conservation laws energv –momentum $(\nablcdot\gamma)$ various mathematical representations for      379
Conservation laws equivalence of differential and integral formulations of      146
Conservation laws for test-particle motion in any spherical, static geometry      681
Conservation laws for test-particle motion in Kerr metric and electromagnetic field      898f
Conservation laws for test-particle motion in Schwarzschild geometry      655—658
Conservation laws for test-particle motion related to Hamilton’s principle      654
Conservation laws for test-particle motion related to Killing vector field      651
Conservation laws total mass-energy and 4-momentum of a gravitating source      455 468—471
Constants, fundamental limits on deviations from constancy      1061—1063
Constants, fundamental listed, endpapers      1061
Constraint, as signaling reduced number of degrees of freedom      528f
Constraints, first and second class, in Dirac’s formulation of geometrodynamics      486
Constructive interference as shortest leap from quantum to classical      1185
Constructive interference behind Hamilton — Jacobi formulation of mechanics and geometrodynamics      423f
Constructive interference in particle mechanics and in geometrodynamics, compared      1186f
Continuity, equation of      152ff 565
Contraction of tensor      82
Contravariant components      76 201—207 312
Controlled ignorance, philosophy of      452f 996
Convection, in supermassive stars      600
Coordinate patch, concept introduced      10—12
Coordinate singularities      see “Singularities coordinate”
Coordinate systems asymptotically Minkowskiian      463
Coordinate systems Boyer — Lindquist      877—880
Coordinate systems comoving, for collapsing star      857
Coordinate systems comoving, for universe      715ff
Coordinate systems curvilinear, in linearized theory      441
Coordinate systems Eddington — Finklestein      828—831 849
Coordinate systems Euclidean      22f
Coordinate systems Fermi normal      332
Coordinate systems for any spherical system      616f
Coordinate systems Galilean      289 291—298 414
Coordinate systems isotropic, for Schwarzschild geometry      840
Coordinate systems isotropic, for static, spherical system      595
Coordinate systems Kerr      879f
Coordinate systems Kerr — Schild      903
Coordinate systems Kruskal — Szekeres      827 831—836
Coordinate systems local Lorentz      207
Coordinate systems Lorentz      22f
Coordinate systems Minkowski      same as “Lorentz”
Coordinate systems nature of, deducible from metric      595f
Coordinate systems Novikov      826f
Coordinate systems of accelerated observers      172—176
Coordinate systems of post-Newtonian formalism      1073f 1082—1087 1089 1091 1097
Coordinate systems Regge — Wheeler, same as Tortoise Riemann normal      285ff 329—332
Coordinate systems Schwarzschild, for pulsating star      689
Coordinate systems Schwarzschild. for Schwarzschild geometry      607
Coordinate systems Schwarzschild. for static, spherical systems      597
Coordinate systems Tortoise, for Schwarzschild geometry      663 665—666
coordinates      5—10
Coordinates canonical, in context of differential forms and symplectic structure      125f
Coordinates must not be predicted by geometrodynamic law      409
Coordinates preferred, in Newton, Minkowskii, and Einstein spacetime      296
Coordinates rotation and translation of in Newton — Cartan theory      294f
Coplanarity, test for      281
Coriolis forces      165 175 294 327 332
Correspondence principles      412f
Correspondence, between 1-forms and vectors      310 (see also “Vectors”; “Forms differential”)
Cosmic censorship      937
Cosmic gravitational-wave background      712 736f 764f
Cosmic microwave radiation      712f 764ff
Cosmic microwave radiation existence of, refutes steady-state cosmological model      770
Cosmic microwave radiation incompatible with “turnaround universe”      751
Cosmic microwave radiation isotropy of      703
Cosmic microwave radiation prediction of by Gamow et ai      760
Cosmic neutrino background      712 736f 764f
Cosmic rays      757
Cosmic rays evolution of mean density of      798
Cosmic rays observations refute Klein — Alfven cosmological models      770
Cosmological constant      410ff
Cosmological constant Einstein’s invention and retraction of      410f 707 758
Cosmological constant influence on evolution of universe      747 771 774
Cosmological models anisotropic, Chap      30
Cosmological models Brans — Dicke      770
Cosmological models closure of universe as boundary condition      1181
Cosmological models closure of universe related to Mach’s principle      543 549
Cosmological models de Sitter      745 758
Cosmological models Einstein static universe      746f 750 758f
Cosmological models flat, closed, static 3-torus model      284
Cosmological models Friedmann      752
Cosmological models Friedmann arbitrariness in expansion factor      720ff
Cosmological models Friedmann assumed equation of state      713 726
Cosmological models Friedmann assumption of homogeneity and isotropy      703 713
Cosmological models Friedmann assumption that matter and radiation exchange negligible energy      726ff 765
Cosmological models Friedmann assumption that pressure of mafter can always be neglected      726 728
Cosmological models Friedmann coordinate system constructed      715ff
Cosmological models Friedmann critical density for closure of universe if $\Lambda=0$      782
Cosmological models Friedmann curvature parameter $K=k/a^2$      721
Cosmological models Friedmann density and pressure expressed in terms of expansion factor      727
Cosmological models Friedmann discovery of by Friedmann and Lemaitre      751 758
Cosmological models Friedmann dynamic equation (for $a_{,tt}$)      729
Cosmological models Friedmann dynamic equation derivable from initial-value equation plus first law of thermodynamics      729
Cosmological models Friedmann dynamics of early stage independent of k (unaffected by closure)      742f
Cosmological models Friedmann Einstein tensor for      728
Cosmological models Friedmann element, various forms for      721ff 731 759
Cosmological models Friedmann embedding diagrams      723 725
Cosmological models Friedmann expansion factor introduced      718
Cosmological models Friedmann expansion factor renormalized      721f
Cosmological models Friedmann first law of thermodynamics for      726ff
Cosmological models Friedmann Friedmann assumption of perfect-fluid stress-energy tensor      711f
Cosmological models Friedmann implications of homogeneity and isotropy      714f 720ff
Cosmological models Friedmann implications of parameter values for future of universe      747 771 773f
Cosmological models Friedmann initial-value equation (for $a_{,t}^2$)      744
Cosmological models Friedmann isotropy implies homogeneity      715 723
Cosmological models Friedmann observer’s parameters vs. relativity parameters      771ff
Cosmological models Friedmann orthonormal frames attached to matter      728
Cosmological models Friedmann possible 3-geometries for homogeneous hypersurfaces      720—725
Cosmological models Friedmann small perturbations of      800f (see also “Hubble constant” “Density “Deceleration
Cosmological models Friedmann time parameters: $t, a, \eta$      730—732
Cosmological models Friedmann topology not unique      725
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$ in extenso      733—742
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, causal isolation of various regions from each other      740ff
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, compared with Newtonian cosmological models      707f
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, concrete numbers for a typical model      738
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, coordinate diagram for      741
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, critical density for closure      710 782
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, effective potential for evolution of      706
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, Einstein’s arguments favoring closure      704
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, embedding diagram      723f
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, first law of thermodynamics applied to      705 726ff
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, geometry of 3-sphere hypersurfaces      704 721 723f
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, inevitability of recollapse      707
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, initial-value equation for      537 705f 729 733
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, matter-dominated era      733ff 738—742
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, mocked up by Schwarzschild-lattice universe      739f
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, propagation of signals around universe      741 750
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, radiation-dominated era      733—737 740ff
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, radius of defined      704
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, radius of maximum expansion      705
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, solutions of field equations for      734f
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, topology not unique      725
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, track-1 overview      704—711
Cosmological models Friedmann, closed $(k=+1, \Lambda=0)$, volume of      724
Cosmological models Friedmann, flat and open $(k=0, k=-1, \Lambda=0)$, embedding diagram      724f
Cosmological models Friedmann, flat and open $(k=0, k=-1, \Lambda=0)$, geometry of homogeneous hypersurfaces      721 724f
Cosmological models Friedmann, flat and open $(k=0, k=-1, \Lambda=0)$, matter-dominated era      743f
Cosmological models Friedmann, flat and open $(k=0, k=-1, \Lambda=0)$, radiation-dominated era      742f
Cosmological models Friedmann, flat and open $(k=0, k=-1, \Lambda=0)$, Solutions of field equations for      742
Cosmological models Friedmann, flat and open $(k=0, k=-1, \Lambda=0)$, topology not unique      725
Cosmological models Friedmann, plus cosmological constant $(k=0, \pm 1; \Lambda\neq 0)$, dynamical evolution of      744—747
Cosmological models Friedmann, plus cosmological constant $(k=0, \pm 1; \Lambda\neq 0)$, effective potential for evolution of      744 746 748f
Cosmological models Friedmann, plus cosmological constant $(k=0, \pm 1; \Lambda\neq 0)$, initial-value equation (for $a_{,t}^2$)      744
Cosmological models Friedmann, plus cosmological constant $(k=0, \pm 1; \Lambda\neq 0)$, special cases of      745ff 750f
Cosmological models hesitation universe      750
Cosmological models hierarchic (island) universe      748f 770
Cosmological models inhomogeneous but spherical models      804
Cosmological models inhomogeneous Gowdy models      804
Cosmological models inhomogeneous, Chap      30
Cosmological models Kasner model      801 805ff
Cosmological models Klein — Alfven model      748 770
Cosmological models mixmaster      805—814
Cosmological models Newtonian      707f 759
Cosmological models primordial chaos in big-bang models      769 802ff
Cosmological models primordial chaos in big-bang models in extenso, Chap      30
Cosmological models primordial chaos in big-bang models primordial black holes produced by      884 (see also “Isotropy and homogeneity of universe possible
Cosmological models Schwarzschild lattice universe      739f
Cosmological models steady-state universe      745 750 770
Cosmological models turnaround universe      750f (see also “Cosmology: history of universe according to “standard big-bang model””)
Cosmology, expansion of universe, discovery of by Hubble      759 792—794
Cosmology, expansion of universe, prediction of by Friedmann, de Sitter, and Weyl      758 776
Cosmology, expansion of universe, removed motive for cosmological term      410—411
Cosmology, expansion of universe, was greatest prediction of Einstein’s theory      411
Cosmology, expansion of universe, what expands and what does not      719 739
Cosmology, expansion of universe, will Universe recontract      747 771 774
Cosmology, expansion of universe, “Where is the new space added?”      719 739
Cosmology, history of man’s ideas and knowledge of the universe      752—762
Cosmology, history of the universe according to the “standard big-bang model,” complete thermal equilibrium at $t\ll 1$ second      736 763f
Cosmology, history of the universe according to the “standard big-bang model,” condensation of stars, galaxies, and clusters of galaxies      766 769 800
Cosmology, history of the universe according to the “standard big-bang model,” decoupling of gravitational waves and neutrinos      736 764
Cosmology, history of the universe according to the “standard big-bang model,” expansion forever vs. recontraction      747 771 774
Cosmology, history of the universe according to the “standard big-bang model,” in extenso, Chap      28
Cosmology, history of the universe according to the “standard big-bang model,” initial singularity      769f
Cosmology, history of the universe according to the “standard big-bang model,” past history not much affected by k (by geometry of hypersurfaces)      742f 763
Cosmology, history of the universe according to the “standard big-bang model,” possible roles of primordial chaos      769 803f 816
Cosmology, history of the universe according to the “standard big-bang model,” recombination of pairs      736f 764
Cosmology, history of the universe according to the “standard big-bang model,” thermal interaction of matter and radiation during expansion      765f
Cosmology, history of the universe according to the “standard big-bang model,” transition from matter dominance to radiation dominance      74If 765f
Cosmology, history of the universe according to the “standard big-bang model,” what “preceded” initial singularity?      769
Cosmology, observational probes of standard model      780—798
Cosmology, observational probes of standard model, abundances of elements      765
Cosmology, observational probes of standard model, angle-effective distance vs. redshift (“lens effect of universe”)      795f
Cosmology, observational probes of standard model, comparison of ages deduced by various methods      797f
Cosmology, observational probes of standard model, comparison of temperature, redshift and emission times for cosmic background radiations      737
Cosmology, observational probes of standard model, distance-redshift relation, derivation of      780f
Cosmology, observational probes of standard model, distance-redshift relation, observational data      781 785—788 792ff
Cosmology, observational probes of standard model, evolution of quasar population      767f 770
Cosmology, observational probes of standard model, experimental tests of general relativity using cosmological observations      1047
Cosmology, observational probes of standard model, magnitude-redshift relation, derivations of      782—785 794
Cosmology, observational probes of standard model, magnitude-redshift relation, observational data      788—791
Cosmology, observational probes of standard model, mean mass density of universe      710ff 796f
Cosmology, observational probes of standard model, observed properties of universe abundances of elements      765
Cosmology, observational probes of standard model, observed properties of universe age deduced from expansion rate      709f 797
Cosmology, observational probes of standard model, observed properties of universe ages of oldest stars      709 797f
Cosmology, observational probes of standard model, observed properties of universe ages of rocks and meteorites      759 761 798
Cosmology, observational probes of standard model, observed properties of universe cosmological expansion      772 775f 785—788 793f
Cosmology, observational probes of standard model, observed properties of universe deceleration parameter      785 788—791
Cosmology, observational probes of standard model, observed properties of universe density parameter      796f
Cosmology, observational probes of standard model, observed properties of universe energy and pressure in kinetic motions of galaxies and stars      711
Cosmology, observational probes of standard model, observed properties of universe entropy per baryon      766
Cosmology, observational probes of standard model, observed properties of universe homogeneity on large scales      703 815
Cosmology, observational probes of standard model, observed properties of universe isotropy on large scale      703 801 815
Cosmology, observational probes of standard model, observed properties of universe mean density in electromagnetic radiation      712
Cosmology, observational probes of standard model, observed properties of universe mean density of cosmic rays      712 757 798
Cosmology, observational probes of standard model, observed properties of universe mean density of intergalactic matter      712 761f 797
Cosmology, observational probes of standard model, observed properties of universe mean density of luminous matter      710f 761
Cosmology, observational probes of standard model, observed properties of universe quasar population, evolution of      767f 770
Cosmology, observational probes of standard model, observed properties of universe rotation, observational limits on      939
Cosmology, observational probes of standard model, observed properties of universe “fine-scale” structure      703 (see also “Cosmic microwave radiation” “Hubble
Cosmology, observational probes of standard model, source counts (number-flux relation)      798
Cosmology, observational probes of standard model, summary of      797f
Cosmology, speculations about initial and final states of universe      707 1209 1213—1217
Coulomb field, “pancaking” of for fast charged particle      124
Coulomb force, from electromagnetic 4-potential      122
Coupling of fields to matter, direct vs. indirect      1063f
Covariance, general      see «General covariance”
Covariant components of a tensor      76 201—207 312
Covariant derivative additivity of      252
Covariant derivative algebra of      250—261
Covariant derivative as a machine with slots      253ff
Covariant derivative chain rule for      214 250 252 257f 260f
Covariant derivative commutes with contraction      214
Covariant derivative compatibility with metric      215f 313ff 353f
Covariant derivative component calculations of      215
Covariant derivative connection coefficients as its components      210 256 261f
Covariant derivative defined by parallel transport      208 249
Covariant derivative fundamental equations summarized      223—224
Covariant derivative in a hypersurface      510
Covariant derivative is not a tensor      253 255f
Covariant derivative noncommutation of two covariant derivatives      389ff
Covariant derivative of tensor densilies      501f
Covariant derivative pictorialized      209 212
Covariant derivative regarded as a gravitational field      387 (see also “Connection coefficients”; “Parallel transport”; “Rotation coefficients”
Covariant derivative rotation 1-forms constructed from      349ff 359f
Covariant derivative semicolon notation for, introduced      210
Covariant derivative symmetry of (“no torsion”)      250 252 353f
Crab nebula, ii      619f 760
Cross section collisional      69
Cross section Lorentz transformation of      70
Crystallography, related to 1-forms      232
Current 4-vector      see “Charge density-current”
Curvature      (see also “Bianchi identities”; “Gauss — Weingarten equations”; “Gauss — Codazzi equations”
Curvature of spacetime can be great locally even if average is near zero      220 (see also “Geodesic deviation” “Tidal “Spacetime
Curvature of spacetime coupling to moments of a macroscopic object      391f 476—480 1120f
Curvature of spacetime coupling to physics in equivalence principle      389—392
Curvature of spacetime generation of by mass-energy      37—44 Chap.
Curvature of spacetime implied by gravitational red shift      187ff
Curvature of spacetime measured by geodesic deviation      29—37 195f 270—275
Curvature of spacetime measured by gravity gradiometer      400—403
Curvature of spacetime modeled by surface of apple      4f
Curvature of spacetime procedure-in-principle to measure      72
Curvature tensors for specific manifolds 2-hyperboloid      334
Curvature tensors for specific manifolds 2-sphere      30 341
Curvature tensors for specific manifolds 2-surface of revolution      339f
Curvature tensors for specific manifolds 3-hyperboloid      343 721
Curvature tensors for specific manifolds 3-sphere      343 721
Curvature tensors for specific manifolds 3-surface of “constant curvature”      721
Curvature tensors for specific manifolds Friedmann cosmology      345 348 355ff 537 728
Curvature tensors for specific manifolds gravitational wave, exact, plane      346f 444
Curvature tensors for specific manifolds gravitational wave, linearized      948
Curvature tensors for specific manifolds linearized theory, any metric      438
Curvature tensors for specific manifolds Newton — Cartan spacetime      290
Curvature tensors for specific manifolds Newtonian sphere of uniform density      39f
Curvature tensors for specific manifolds Newtonian spherical vacuum field      37
Curvature tensors for specific manifolds Schwarzschild metric      821ff
Curvature tensors for specific manifolds spherical, dynamic line element      361f
Curvature tensors for specific manifolds spherical, static line element in Schwarzschild coordinates      360f
Curvature tensors for specific manifolds world tube of a collapsing star’s surface      853
Curvature, constant 3-geometries of      720—725
Curvature, formalism of Bel — Robinson (tidal) tensor      381f
Curvature, formalism of conformal (Weyl) tensor in Nordstrom — Einstein — Fokker theory of gravity      429 431
Curvature, formalism of conformal (Weyl) tensor introduced      325 327
Curvature, formalism of conformal (Weyl) tensor Petrov — Pirani algebraic classification of      1165
Curvature, formalism of conformal (Weyl) tensor principal null congruences of      902
Curvature, formalism of conformal (Weyl) tensor spinor representation of      1154f
Curvature, formalism of conformal (Weyl) tensor vanishes in 3 dimensions      550
Curvature, formalism of curvature 2-form      348—363
Curvature, formalism of curvature 2-form picture of, for 2-sphere      337
Curvature, formalism of curvature 2-form picture of, for pith helmet      338
Curvature, formalism of curvature operator $\mathfrak R$ as machine-with-slots      351f
Curvature, formalism of curvature operator $\mathfrak R$ as twice-applied exterior derivative      351
Curvature, formalism of curvature operator $\mathfrak R$ in context of Newton — Cartan theory      299
Curvature, formalism of curvature operator $\mathfrak R$ introduced      271
Curvature, formalism of curvature operator $\mathfrak R$ regarded as bivector-valued 2-form      376—380
Curvature, formalism of Einstein tensor as trace of double dual of Riemann      325f 376
Curvature, formalism of Einstein tensor conservation of, from boundary of a boundary      377ff
Curvature, formalism of Einstein tensor contracted Bianchi identity (“conservation of Einstein”)      325 377ff
Curvature, formalism of Einstein tensor formula for mixed components in terms of Riemann components      343f
1 2 3 4 5 6 7 8 9 10
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå