Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gravitation

Àâòîðû: Misner C.W., Thorne K.S., Wheeler J.A.

Àííîòàöèÿ:

Put as simply as possible, this is a book on Einstein's theory of gravity (general relativity). It is the first textbook on the subject that uses throughout the modern formalism and notation of differential geometry, and it is the first book to document in full the revolutionary techniques developed during the past decade to test the theory of general relativity.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ãðàâèòàöèîííîå âçàèìîäåéñòâèå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 1278

Äîáàâëåíà â êàòàëîã: 22.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Curvature, formalism of Einstein tensor in terms of intrinsic and extrinsic curvature      515
Curvature, formalism of Einstein tensor interpreted as moment of rotation      373—377
Curvature, formalism of Einstein tensor introduced      222 325f
Curvature, formalism of Einstein tensor track-1 equations summarized      224
Curvature, formalism of Einstein tensor uniqueness of      405 407f
Curvature, formalism of extrinsic curvature of a hypersurface      511—516
Curvature, formalism of extrinsic curvature of a hypersurface contrasted with intrinsic curvature      336 421
Curvature, formalism of extrinsic curvature of a hypersurface from Lie derivative of metric      520
Curvature, formalism of extrinsic curvature of a hypersurface Gauss — Codazzi relations      514ff
Curvature, formalism of extrinsic curvature of a hypersurface operator for      511
Curvature, formalism of extrinsic curvature of a hypersurface tensor for      512
Curvature, formalism of fundamental equations, summarized      223—224
Curvature, formalism of Gaussian curvature of a 2-surface      30 44 336f
Curvature, formalism of intrinsic curvature of a hypersurface      509f
Curvature, formalism of invariants of Riemann      491
Curvature, formalism of Jacobi curvature operator      286
Curvature, formalism of Jacobi curvature operator in context of Newton — Cartan theory      299 301
Curvature, formalism of Jacobi curvature tensor      286f
Curvature, formalism of principal radii of curvature for a 2-surface      44 335f
Curvature, formalism of Ricci tensor      222 325f
Curvature, formalism of Ricci tensor in Newton — Cartan theory      290 300
Curvature, formalism of Riemann tensor as machine with slots      271 274f
Curvature, formalism of Riemann tensor Bianchi identities      221f 224 325f
Curvature, formalism of Riemann tensor by parallel transport around closed curve      277—282
Curvature, formalism of Riemann tensor component formula for in non-coordinate basis      277
Curvature, formalism of Riemann tensor component formulas for, summarized      224 266
Curvature, formalism of Riemann tensor defined by geodesic deviation      29—37 218f 270—277 287
Curvature, formalism of Riemann tensor dynamic components of      517f
Curvature, formalism of Riemann tensor elementary introduction to      31 34—37 39
Curvature, formalism of Riemann tensor in 2 and 3 dimensions: deducible from Ricci tensor      334 343 550
Curvature, formalism of Riemann tensor in extenso track-1 treatment (metric present)      218—224
Curvature, formalism of Riemann tensor in extenso, in absence of metric      270—288
Curvature, formalism of Riemann tensor in extenso, properties induced by introduction of metric      324—327
Curvature, formalism of Riemann tensor in linearized theory      438
Curvature, formalism of Riemann tensor in Newton — Cartan spacetime      290 302
Curvature, formalism of Riemann tensor invariants of      491
Curvature, formalism of Riemann tensor number of independent components      326
Curvature, formalism of Riemann tensor only tensor from, and linear in, second derivatives of metric      408
Curvature, formalism of Riemann tensor proof of tensor character      276
Curvature, formalism of Riemann tensor relation to curvature 2-form      352
Curvature, formalism of Riemann tensor relation to curvature operator      274ff
Curvature, formalism of Riemann tensor relation to noncommuting covariant derivatives      389ff
Curvature, formalism of Riemann tensor Riemann, matrix display of components of      360f
Curvature, formalism of Riemann tensor spinor representation of      1154f
Curvature, formalism of Riemann tensor symmetries of      35 220ff 286 324f
Curvature, formalism of Riemann tensor wave equation for      382
Curvature, formalism of Riemann tensor, double dual of      325f 343 371 376
Curvature, formalism of scalar curvature for a 3-surface      422f
Curvature, formalism of scalar curvature Gauss — Bonnet integral of      309 381
Curvature, formalism of scalar curvature in Hilbert action principle      418 491
Curvature, formalism of scalar curvature in terms of area deficit      516
Curvature, formalism of scalar curvature introduced      222 325
Curvature, formalism of Weyl tensor      see “Conformal tensor”
Curvature, formalism of York’s curvature      541 550
Curvature, methods of calculating analytical, on a computer      342
Curvature, methods of calculating geodesic Lagrangian method      344—348
Curvature, methods of calculating in extensor      Chap 14
Curvature, methods of calculating mixed components of Einstein expressed explicitly in terms of Riemann components      343f
Curvature, methods of calculating straightforward method, from connection and its derivative      340f
Curvature, methods of calculating via 2-forms, method      354—362
Curvature, methods of calculating via 2-forms, theory      348—354
Curvature, methods of calculating ways to display results      334 360f
Curve, in context of differential topology      226
Curves, congruence of      240
Cutoff, related to Planck length      428
Cycloidal motion for radial geodesies m Schwarzschild geometry      664
Cycloidal motion for radius of closed Friedmann cosmology      708
Cycloidal motion for surface of a pressure-free collapsing star      852
Cycloidal motion for test particle in field of a Newtonian point mass      708
Day, length of      23—26 1124f
de Broglie wave      53 55—59
de Rham operator      see “Wave operators”
de Sitter universe      745 758
Deceleration parameter of universe denned      772
Deceleration parameter of universe determinant of whether universe will recontract      774
Deceleration parameter of universe magnitude-redshift relation for measuring      782—785 794
Deceleration parameter of universe observational data on      785 788—791
Deceleration parameter of universe relationship to other cosmological parameters      771—773
Deficit angles      309 1167ff
Deflection of light, gravitational, calculated in linearized theory      184f 446
Deflection of light, gravitational, calculated in PPN formalism      1101ff
Deflection of light, gravitational, calculated in Schwarzschild coordinates      679
Deflection of light, gravitational, early Einstein words on      431
Deflection of light, gravitational, experimental results on      1104f
Deflection of light, gravitational, in flat-space theories of gravity      179 184f
Deflection of light, gravitational, magnitude of compared with current technology      1048 1101
Deflection of light, gravitational, pictorial explanation of      32
Deflection of light, gravitational, post-post-Newtonian corrections to      1069
Deflection of particles by a central field      671 1099f
Degenerate electron gas      see “White-dwarf matter”
Degenerate neutron gas      see “Neutron-star matter”
Degrees of freedom, counting of for geometrodynamics and electrodynamics      529—533
Delta function, Dirac      121
Delta, Kronecker      22
Democracy of histories      418—419
Density of universe      (see under “Cosmology: observed properties of the universe”)
Derivative, following fluid      153 1078
Detailed balance, principle of      1028ff 1033 1035f
Determinant and Jacobian      160—161
Determinant derivative of      160—161
Deviation, geodesic      see “Geodesic deviation”
DeWitt equation      1189 (see also “Emstem — Schroedmger equation”
Dicke — Brans — Jordan theory of gravity      (See under “Gravitation theories
Dicke — Eotvos experiment      See “Eoetvos — Dicke experiment”
Dicke’s framework for analyzing experiments      1049 1064
Differentiable manifold      see “Manifold differentiable”
Differentiable structure      242
Differential conservation law, equivalence to integral conservation law      146
Differential forms      see “Forms differential”
Differential geometry applications of, listed      198 (see also “Differential topology” “Affine “Riemannian and such “Connection” “Forms”)
Differential geometry Cartan’s contributions to      198
Differential geometry overview of      194—198
Differential geometry texts on      196
Differential geometry three levels of: pictorial, abstract, components      198—200
Differential geometry track-1 treatment of      Chap. 8
Differential geometry track-2 treatment of      Chaps. 9—11 13—15
Differential topology      197f Chap. esp “Lie
Dimensionality      10 12
Dirac brackets      486 520
Dirac delta function      121
Dirac equation, in Schwarzschild geometry      1165
Directional derivative as a tangent vector      227—230
Directional derivative of a function along a vector      59—60
Directional derivative operator for      61
Disks, rapidly rotating, in general relativity      621
Dispersion relations obtained from Hamiltonians      486f 494 498
Distance proper      see “Interval Lorentz”
Distance-redshift relation      (see under “Cosmology: observational probes of standard model”)
Distances, as raw material of metric      306—309
Distant action      see “Action at a distance”
Distant stars, inertial influence of.      see “Mach’s principle”
distribution      see “Dirac delta function”
Distribution function      583f 590
Divergence of a vector or tensor      82 213 222 261
Divergences, in theory of particles and fields      426—428
Double star      see “Binary star”
Dragging of inertial frames by a slowly rotating star      699
Dragging of inertial frames by Earth’s rotation      1119f
Dragging of inertial frames in Kerr — Newman geometry      879ff 893—896
Dragging of inertial frames in PPN formalism      1117—1120
Dragging of inertial frames prospects to measure      1120 (see also “Mach’s principle”)
Dual bases      60f 119 202 232
Duality operation on forms, vectors, and tensors application to electromagnetism      88 97f 114
Duality operation on forms, vectors, and tensors double dual of Riemann      371 376
Duality operation on forms, vectors, and tensors not to be confused with duality of bases      119
Duality operation on forms, vectors, and tensors on forms      88 97f 108 119 151
Duality operation on forms, vectors, and tensors on simple forms, expressed in terms of perpendicularity      98
Duality operation on forms, vectors, and tensors special star operation that does not act on forms      376—380
Duality rotation of electromagnetic field      108 482f
Dynamical path length as proportional to phase of wave function      486
Dynamical path length in elementary mechanics      486—487
Dynamical path length in superspace formulation of geometrodynamics      419 1186
d’Alembertian operator      see “Wave operators”
Earth atmosphere and gravity      388
Earth crust, as detector of gravitational waves      1013 1015
Earth general precession (precession of rotation axis)      391 392 1112 1113
Earth gravitational multipole moments      401
Earth mass, radius, density      see “Endpapers”
Earth motion relative to cosmic microwave radiation      713
Earth particles oscillating in hole bored through      39
Earth rotation of, drags inertial frames      1119f (see also “Day”)
Earth satellite orbits used to deduce mass      638
Earth shape as described by collection of distances      306—309
Earth subsurface mass variations      401
Earth tides, as experimental test of general relativity      1123f
Earth vibrations of, as detector for gravitational waves      1013 1015 1035f
Eccentricity of an elliptical orbit      647
Eclipses      24—26 1104
Eddington — Finklestein coordinates      828—831 849
Eddington — Finklestein diagrams      829 830 849 864 873
Effective potentials (continued) for charged test particles in equatorial plane of Kerr — Newman hole      911
Effective potentials for oscillations of mixmaster universe      809ff
Effective potentials for radius of Friedmann universe      706 744 746 748f
Effective potentials for scalar waves in Kerr geometry      915
Effective potentials for test particles in Schwarzschild geometry      639 656 659—662
Effective potentials for waves in Schwarzschild geometry      868 870
Eikonal method      1102
Einstein      (see under “Curvature formalism
Einstein A coefficients      1029
Einstein field equation      431—434
Einstein field equation and collapse      1198—1199 (see also “Geometrodynamics”)
Einstein field equation correspondence with Newtonian theory      412—416
Einstein field equation derivations of from automatic conservation of source      379f 417
Einstein field equation derivations of from Hilbert’s action principle      418
Einstein field equation derivations of from physics on a spacelike slice      419—423
Einstein field equation derivations of from spin-2 field theory      424f 437
Einstein field equation derivations of from superspace analysis      423f
Einstein field equation derivations of from “metric elasticity of space”      426ff
Einstein field equation derivations of in extensor      Chap 17 esp. 416—482
Einstein field equation elementary introduction to      41ff
Einstein field equation integral equation equivalent to      995—996
Einstein field equation modified by cosmological term      410—412
Einstein field equation variational principles for      (see under “Variational principles”
Einstein static universe      746 747 750 758f
Einstein summation convention      9
Einstein tensor      (see under “Curvature formalism
Einstein — Infeld — Hoffman equations of motion      1091 1094—1095
Einstein — Rosen bridge      837ff
Einstein — Schrodinger equation      1189f
Einstein’s elevator      298 (see also “Equivalence principle”)
Einstein’s theory of gravity      see “General relativity”
Elasticity      426—428
Electrodynamics analog of Palatini variational method in      495—498
Electrodynamics analogies and comparisons with geometrodynamics      35 348 364 367—370 “Integrating
Electrodynamics canonical formulation of, as a guide to geometrodynamics      496f 522ff
Electrodynamics deduced from electrostatics plus covariance      81
Electrodynamics deduced from vector potential      122
Electrodynamics in curved spacetime, in extenso      385—391 568—570
Electrodynamics in flat spacetime, in extensor      Chap 3
Electrodynamics in geometric optics limit      see «Geometric optics”
Electrodynamics in language of forms, in extensor      Chap 4
Electrodynamics in language of spinors      1154 1165
Electrodynamics in terms of boundary of a boundary      365—370
Electrodynamics lines of force never end as core principle of      420
Electrodynamics three-plus-one view versus geometric view      78—79
Electromagnetic field calumoid      125
Electromagnetic field complexion      108 482
Electromagnetic field descriptions of and equations governing electric and magnetic fields      73f
Electromagnetic field divergence vanishes      89
Electromagnetic field dual of electromagnetic field tensor Maxwell divergence vanishes      88
Electromagnetic field dual of electromagnetic field tensor Maxwell egg-crate picture of      107 109
Electromagnetic field dual of electromagnetic field tensor Maxwell exterior derivative gives charge density and current      113f
Electromagnetic field dual of electromagnetic field tensor Maxwell introduced      88 105
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday as machinery to produce force from 4-velocity      73 101 104
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday components of      73—74
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday divergence gives charge density and current      81 88
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday egg-crate pictures of      99f 104 106 107 111
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday expressed in terms of exterior products      99
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday exterior derivative vanishes      112f 117
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday generic case reduced to simplest form      122 483
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday Maxwell’s equations for, in component notation      80f 568
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday special cases of pure electric, pure magnetic, and null      122
Electromagnetic field electromagnetic field tensor (or 2-form), Faraday “canonical representation” of      122
Electromagnetic field field momentum      496f 522ff
Electromagnetic field invariants      110 480—483
Electromagnetic field Lorentz force      71ff 101 104 568
Electromagnetic field Lorentz transformation of      78f
Electromagnetic field Lorentz transformations      78f 108ff 482f
Electromagnetic field Maxwell’s equations      80f 568
Electromagnetic field produced by specific sources oscillating dipole      111—112
Electromagnetic field produced by specific sources point charge      107—111 121f
Electromagnetic field stress-energy tensor      140f
Electromagnetic field vector potential      88f 120 569
Electromagnetic field vector potential wave equation for      89 120 388—391 569
Electron capture, in white-dwarf matter      619
Electron quasibound in field of small black hole      1164
Electron spinning, Thomas precession of      175—176
Elementary-particle experiments as tests of relativity theory      1054f 1060 energymomentum”)
Elements, abundances of      765
Elevator      431 (see also “Uniqueness of free fall” “Tide-producing
ElH equations of motion      1091 1094—1095
Embedding diagrams for a spherical, collapsing star      855—856
Embedding diagrams for a static, spherical star      613—615 617
Embedding diagrams for Friedmann cosmological models      723 725
Embedding diagrams for Schwarzschild geometry      837 839 528
Embedding diagrams general discussion      613
Energy in mechanics, as time rate of change of action      486—487
Energy-at-infinity in Kerr — Newman geometry      898f 910
Energy-at-infinity in Schwarzschild geometry      656ff
Energy-momentum 4-vector      51 53f 68
Energy-momentum conservation of      (see under “Conservation laws”)
Energy-momentum density of 3-form for      151
Energy-momentum density of revealed by stress-energy tensor      131
Energy-momentum Four-vector      see “Vector”
Energy-momentum of gravitational field nonlocalizable in generic case      466ff
Energy-momentum of gravitational localizable only to within a wavelength for gravitational waves      955f 964—966 969f
Energy-momentum of gravitational precisely localizable only for spherical systems      603—604 858f
Energy-momentum total, of a gravitating source expressed as a flux integral      461—464
Energy-momentum total, of a gravitating source expressed as a volume integral      464—466
Energy-momentum total, of a gravitating source in terms of asymptotic gravitational field      Chap 19
entropy      (see under “Second law of thermodynamics”)
Eoetoes — Dicke experiments      14—17 1050—1055
Eoetoes — Dicke experiments early Einstein words on      431
Eoetoes — Dicke experiments for massive (self-gravitating) bodies      1127—1131
Eoetoes — Dicke experiments implications for constancy of fundamental constants      1061—1063
Ephemeris for solar system (J.P.L.)      1095 1097
Ephemeris second      28
Equation of structure, Cartan’s      378
Equations of motion derived from Einstein field equation      42—43 471—480
Equations of motion for bodies separated by distances large compared to their sizes deviations from geodesic motion      1120—1121 1128
Equations of motion for bodies separated by distances large compared to their sizes “EIH” (post-Newtonian) for spherical bodies      1091 1094—1095
Equations of state for nuclear and white-dwarf matter      624—626
Equations of state for “cosmological fluid”      713 726
Equinoxes, precession of      391f 1112f
Equivalence principle basis for affine parameter      211 250
Equivalence principle bridge from special relativity to general relativity      164 Chap 207
Equivalence principle Einstein’s      1911
Equivalence principle enunciated      386f 1060
Equivalence principle factor-ordering problems m      388—391
Equivalence principle formulation of      17
Equivalence principle in Newton — Cartan theory      297
Equivalence principle out of spin-2 field theory      425
Equivalence principle role in metric theories      1067f
Equivalence principle tests of      187—190 1054—1063
Equivalence principle weak equivalence principle      see “Uniqueness of free fall”
Ergosphere      880
Ether      1051 1064f
Euclidean geometry      19—22
Euclidean geometry contrasted with Lorentz geometry      51
Euler equation of hydrodynamics applied to a collapsing star      858
1 2 3 4 5 6 7 8 9 10
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå