Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gravitation

Àâòîðû: Misner C.W., Thorne K.S., Wheeler J.A.

Àííîòàöèÿ:

Put as simply as possible, this is a book on Einstein's theory of gravity (general relativity). It is the first textbook on the subject that uses throughout the modern formalism and notation of differential geometry, and it is the first book to document in full the revolutionary techniques developed during the past decade to test the theory of general relativity.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ãðàâèòàöèîííîå âçàèìîäåéñòâèå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 1278

Äîáàâëåíà â êàòàëîã: 22.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Gravitational waves generation by slow-motion, weak-field sources, formulas specialized to impulse events      987
Gravitational waves generation by slow-motion, weak-field sources, nonexistence of monopole and dipole waves      974—978
Gravitational waves generation by slow-motion, weak-field sources, order-of-magnitude formulas for      978—979 980—981
Gravitational waves generation by slow-motion, weak-field sources, role of “gravitational stresses” in generation      996—998
Gravitational waves generation by slow-motion, weak-field sources, waves are predominantly quadrupolar      975—978
Gravitational waves generation by strong-field sources, techniques for calculating particle falling into black hole, by perturbations of Schwarzschild metric      982 983
Gravitational waves generation by strong-field sources, techniques for calculating, rotation of a deformed relativistic star, by perturbations of spherical stellar structure      986
Gravitational waves generation by strong-field sources, techniques for calculating, vibrations of a relativistic star, by perturbations of equilibrium stellar structure      984—985
Gravitational waves initial-value solutions for      536
Gravitational waves intensity and spectrum of waves that bathe Earth, estimate of      986
Gravitational waves linearized theory of Fourier analysis of      1026 1027
Gravitational waves linearized theory of gauge transformations that maintain Lorentz gauge      945
Gravitational waves linearized theory of geodesic deviation      950—955 1011—1012
Gravitational waves linearized theory of in extenso      944—955
Gravitational waves linearized theory of Lorentz gauge condition      944—945
Gravitational waves linearized theory of methods to calculate transverse-traceless part      948—949
Gravitational waves linearized theory of plane-wave solutions      945—946 949 1004—1005
Gravitational waves linearized theory of polarization      952—955
Gravitational waves linearized theory of propagation equation      945
Gravitational waves linearized theory of relative accelerations are purely transverse      951
Gravitational waves linearized theory of Riemann tensor      948
Gravitational waves linearized theory of specific flux of      1027
Gravitational waves linearized theory of transverse-traceless gauge      946—950
Gravitational waves monopole and dipole waves absolutely forbidden      977 978
Gravitational waves nonlinear interaction of waves with themselves nonexistence of precisely periodic waves      956
Gravitational waves nonlinear interaction of waves with themselves self-gravitational attraction      957 968
Gravitational waves nonlinear interaction of waves with themselves wave-wave scattering      968
Gravitational waves propagation through curved spacetime analogy with water waves on ocean      993—994
Gravitational waves propagation through curved spacetime backscatter off curvature      957 864—865 869—871
Gravitational waves propagation through curved spacetime geometric optics formalism      971—972
Gravitational waves propagation through curved spacetime gravitational redshift of frequency      956—957 968
Gravitational waves propagation through curved spacetime propagation equation      967—968
Gravitational waves propagation through curved spacetime propagation of polarization tensor      968 971
Gravitational waves propagation through curved spacetime refraction of wave fronts (deflection of rays) by background curvature      956 968 972
Gravitational waves propagation through curved spacetime shock fronts      554
Gravitational waves propagation through curved spacetime shortwave formalism for      964—973 (see also “Gravitational waves: shortwave formalism”)
Gravitational waves propagation through curved spacetime spinor formalism for      1165 (see also “Gravitational waves: nonlinear interaction of waves with themselves”)
Gravitational waves propagation through curved spacetime stress-energy tensor      969—970 (see also “Gravitational waves: stress-energy tensor for”
Gravitational waves propagation through curved spacetime tails due to interaction with background curvature      957 864—865 869—871
Gravitational waves radiation reaction damping of neutron-star vibrations by      620 628 984f
Gravitational waves radiation reaction evolution of binary-star orbits due to      988
Gravitational waves radiation reaction forbids existence of exactly periodic waves      956
Gravitational waves radiation reaction formalism for calculating, in wreak-field, slow-motion sources      993ff 1001ff
Gravitational waves radiation reaction linked to outgoing-wave condition      993 1001—1002
Gravitational waves radiation reaction order-of-magnitude formulas for      979 981
Gravitational waves shortwave formalism assumptions underlying      964
Gravitational waves shortwave formalism Brill-Hartle averaging process      970
Gravitational waves shortwave formalism coarse-grain viewpoint vs. fine-grain viewpoint      965
Gravitational waves shortwave formalism expansion of Ricci tensor      964—965
Gravitational waves shortwave formalism expansion parameters of      964
Gravitational waves shortwave formalism gauge freedom      967—969
Gravitational waves shortwave formalism geometric optics specialization      971—972
Gravitational waves shortwave formalism Lorentz gauge      968
Gravitational waves shortwave formalism propagation equation      967—968
Gravitational waves shortwave formalism stress-energy tensor      969—970 (see also “Gravitational waves: stress-energy tensor”)
Gravitational waves shortwave formalism transverse-traceless gauge      969
Gravitational waves shortwave formalism variational principle used to derive      972—973
Gravitational waves shortwave formalism “steady” coordinates      964
Gravitational waves sources of astrophysical sources, order-of-magnitude formulas for      980—981
Gravitational waves sources of atomic bomb      987
Gravitational waves sources of big-bang origin of universe      712 736—737 764—765
Gravitational waves sources of binary stars      986 988—990 995
Gravitational waves sources of collapses and explosions in Virgo cluster of galaxies      1042
Gravitational waves sources of collision and coalescence of black holes      886 939 982
Gravitational waves sources of explosion of a star      987
Gravitational waves sources of fall of matter into a black hole      885 982 983 986
Gravitational waves sources of fission of an atomic nucleus      987
Gravitational waves sources of gravitational collapse of a star      628 629 1041
Gravitational waves sources of meteorite striking earth      987
Gravitational waves sources of rotating steel beam      979—980
Gravitational waves sources of rotation of a deformed neutron star (young pulsar)      628f 983 986 1040
Gravitational waves sources of supernova explosions      982 1040 1042
Gravitational waves sources of vibrations of a black hole      886
Gravitational waves sources of vibrations of neutron star      982—986
Gravitational waves stress-energy tensor for as source for background curvature of spacetime      966 973
Gravitational waves stress-energy tensor for divergence vanishes      970
Gravitational waves stress-energy tensor for elementary summary of      955—956
Gravitational waves stress-energy tensor for expressed as an average of stress-energy pseudotensor      972
Gravitational waves stress-energy tensor for expressed in terms of metric perturbations      969
Gravitational waves stress-energy tensor for expression for in traceless Lorentz gauge      970
Gravitational waves stress-energy tensor for for exact plane wave      963
Gravitational waves stress-energy tensor for for geometric-optics waves      972
Gravitational waves stress-energy tensor for for waves in nearly flat spacetime      955—956
Gravitational waves stress-energy tensor for gauge invariance of      972
Gravitational-wave cross sections for a Weber bar      1025
Gravitational-wave cross sections for a Weber bar in multimode operation      1035
Gravitational-wave cross sections for any resonant, mechanical detector      1025 1029 1032
Gravitational-wave cross sections for Earth in fundamental quadrupole mode      1036
Gravitational-wave cross sections for idealized vibrator      1024 1025
Gravitational-wave cross sections limits on usefulness of concept of cross      section 1019 1022
Gravitational-wave cross sections related to emission patterns      1032—1033 1035
Gravitational-wave cross sections summary of ways to use. for wave-dominated      detectors 1020— 1021
Gravitational-wave cross sections use of for noisy detectors      1038—1039
Gravitational-wave cross sections used to calculate total energy deposited in detector      1027 1028
Gravitational-wave detailed analysis of any resonant vibrator, analyzed by detailed balance      1030 1033
Gravitational-wave detailed analysis of any resonant vibrator, analyzed by dynamic method      1031—1034
Gravitational-wave detailed analysis of Earth vibrating in quadrupole mode      1035—1036
Gravitational-wave detailed analysis of electromagnetic waves in a toroidal wave guide      1043—1044
Gravitational-wave detailed analysis of idealized vibrator (two masses on a spring)      1022—1028
Gravitational-wave detailed analysis of noisy resonant vibrator (extraction of signal from noise)      1036—1040
Gravitational-wave detailed analysis of two freely falling bodies      1018
Gravitational-wave detectors conceivable types of angular accelerations of driven oscillators      1013 1017
Gravitational-wave detectors conceivable types of angular accelerations of rotating bars (“heterodyne detector”)      1013 1016—1017
Gravitational-wave detectors conceivable types of beads on stick      444f
Gravitational-wave detectors conceivable types of Earth-moon separation      1013 1014 1018
Gravitational-wave detectors conceivable types of electromagnetic waves in a toroidal wave guide      1043—1044
Gravitational-wave detectors conceivable types of idealized vibrator (2 masses on a spring)      1022—1028
Gravitational-wave detectors conceivable types of nonmechanical detectors      1040
Gravitational-wave detectors conceivable types of normal-mode vibrations of an elastic bar      1013 1016 1025 1035 1038
Gravitational-wave detectors conceivable types of normal-mode vibrations of Earth and moon      1013 1015
Gravitational-wave detectors conceivable types of normal-mode vibrations of general elastic bodies      1013 1016 1025 1028—1035 1041—1042
Gravitational-wave detectors conceivable types of oscillations of Earth’s crust      1013 1015
Gravitational-wave detectors conceivable types of pumping of fluid in a rotating pipe      1013 1018
Gravitational-wave detectors methods of analyzing (for mechanical detectors small compared to wavelength) driving forces of waves      1006 1009 1010
Gravitational-wave detectors methods of analyzing (for mechanical detectors small compared to wavelength) dynamic analysis: Newtonian equation of motion plus wave driving forces      1006—1009
Gravitational-wave detectors methods of analyzing (for mechanical detectors small compared to wavelength) for noisy detector      1019 1036—1040
Gravitational-wave detectors methods of analyzing (for mechanical detectors small compared to wavelength) line-of-force diagram      1011—1012
Gravitational-wave detectors methods of analyzing (for mechanical detectors small compared to wavelength) method of detailed balance      1028 1029—1030 1033
Gravitational-wave detectors methods of analyzing (for mechanical detectors small compared to wavelength) proper reference frame of detector      1005—1006 1010 1012
Gravitational-wave prospects for the future      1040ff
Gravitational-wave sensors for monitoring displacements      1041 1042
Gravitational-wave thermally noisy detectors extraction of small signal from noise      1036—1040
Gravitational-wave thermally noisy detectors sensitivity of to hammer-blow waves      1039
Gravitational-wave thermally noisy detectors ways to improve sensitivity      1040
Gravitons      972
Gravity gradiometer      400—403
Group      see “Rotation group”; “Lorentz group”
Group of motions      652—653 (see also “Killing vector fields”)
Gyromagnetic ratio, of Kerr — Newman black hole      883 892
Gyroscopes employed in constructing proper reference frame      327 330f
Gyroscopes employed in definition of Fermi — Walker transport      165
Gyroscopes precession of as experimental test of general relativity      1117—1120 (see also “Dragging of inertial frames”)
Hair on a billiard ball      978
Hair on a hole      see «Kerr — Newman geometry uniqueness
Hamilton — Jacobi theory      486ff 641—649
Hamilton — Jacobi theory, for electrodynamics      1195
Hamilton — Jacobi theory, for free particle      1194
Hamilton — Jacobi theory, for geometrodynamics in superspace      423f 1180—1190
Hamilton — Jacobi theory, for harmonic oscillator      1194
Hamilton — Jacobi theory, for test-particle motion deflection of light by sun, in PPN formalism      1102f
Hamilton — Jacobi theory, for test-particle motion in Kerr — Newman gravitational and electromagnetic fields      900—901
Hamilton — Jacobi theory, for test-particle motion in Newtonian M/r potential      644—649
Hamilton — Jacobi theory, for test-particle motion in Schwarzschild gravitational field      649
Hamilton — Jacobi theory, for test-particle motion perihelion shift in PPN formalism      1114f
Hamilton — Jacobi theory, relation to quantum theory      641—643
Hamiltonian contrasted with super-Hamiltonian, for charged particle in field      488—489
Hamiltonian dynamics, in the language of forms      125—126
Hamiltonian dynamics, symplectic structure of      126
Hamiltonian electromagnetic      497
Hamiltonian for test-particle in Newtonian l/r potential      644 (see also “Super-Hamiltonian”)
Hamiltonian, ADM, applied to mixmaster cosmology      809
Hamilton’s principle for geodesic motion      654
Harrison — Wakano — Wheeler stellar models      625ff 696
Harrison — Wheeler equation of state      625
Hat product      see “Wedge product”
Heat flow in general relativity heat-flux 4-vector      567
Heat flow in general relativity in a stationary gravitational field      568
Heat flow in general relativity law of thermal conductivity      567
Heat flow in general relativity references on      559
HII regions in galaxies      710 761 786f
Hilbert’s variational principle      see “Variational principle Hilbert’s”
Histories, democracy of      320
Histories, space of      318—319
Histories, sum over      320 419 499f
Holonomic basis      204 210 239
Homologous pulsations of a star      697 1079
Honeycomb structure      see “Forms”
Horizons in cosmology      815f
Horizons in Friedmann cosmologies      740ff 815
Horizons, in black-hole physics caustics of      925
Horizons, in black-hole physics created by gravitational collapse      862 863 867 924
Horizons, in black-hole physics definition of      923—924
Horizons, in black-hole physics for Kerr — Newman geometry      879ff
Horizons, in black-hole physics for Kerr — Newman geometry angular velocity of      914
Horizons, in black-hole physics for Kerr — Newman geometry area of      889 914
Horizons, in black-hole physics for Kerr — Newman geometry generators of      903f
Horizons, in black-hole physics generators of      903—904 925 929—931 932
Horizons, in black-hole physics global structure analyzed      926—931
Horizons, in black-hole physics global structure of (theorem)      924—925
Hubble expansion rate      709f
Hubble expansion rate distance-redshift relation used in measuring      780—781
Hubble expansion rate expressed in terms of expansion factor a (t)      732
Hubble expansion rate relationship to other cosmological parameters      771—773 (see also under “Cosmological models”
Hubble expansion rate, history of knowledge of      709—710 758—761
Hughes — Drever experiment      1064
Hydrodynamics equilibrium in a stationary gravitational field      566 568
Hydrodynamics Euler equation      564
Hydrodynamics for a fluid with viscosity and heat flow      567—568
Hydrodynamics for a simple fluid with no heat flow or viscosity      562—563
Hydrodynamics general relativistic basic references      562n 568
Hydrodynamics gradient of 4-velocity resolved into 4-acceleration. expansion, relation. and shear      566
Hydrodynamics interaction of charged matter with an electromagnetic field      570 (see also “Thermodynamics laws
Hydrodynamics Newtonian, in absence of gravity      152ff
Hydrodynamics Newtonian, in presence of gravity      387f 1077—1080
Hydrodynamics post-Newtonian      see under “PPN formalism”
Hydrodynamics volume changes related to divergence of flow lines      565
Hydrostatic equilibrium buoyant force      606
Hydrostatic equilibrium in any stationary gravitational field      566
Hydrostatic equilibrium in static, spherical star      601—602 605
Hydrostatic equilibrium Oppenheimer — Volkoff equation of      605
Hyperbolic motion of an accelerated observer      166ff 173f
Hypersurface, spacelike      see «Spacelike slice”
Ideal gas      139f
Identity, as automatically fulfilled conservation law      405
Imaginary time coordinate not used      51
Impact parameter for hyperbolic orbit in Schwarzschild field      670
Impact parameter for hyperbolic, Newtonian orbit      647
Impact parameter for photon in PPN formalism      1101f
Impact parameter for photon in Schwarzschild field      672
Index manipulations in affine manifolds      225f
Index manipulations in curved, Riemannian manifolds.      201—204 223f
Index manipulations in global Lorentz frames      85
Index manipulations in linearized theory      436
Index, contravariant and covariant      76
Induction, from electromagnetic 4-potential      122
Inertia      460
Inertial forces      165 332
Inertial forces in Newton — Cartan theory      294
Inertial frames, dragging of      see «Dragging of inertial frames”
Inertial guidance      247
Inertial mass      159f 431 1051
Inertial reference frame, local ($\equiv$ local Lorentz frame if orthonormal coordinates are used)      18f
Inertial reference frame, local ($\equiv$ local Lorentz frame if orthonormal coordinates are used) defined by uniform velocity of free test particles      23
Inertial reference frame, local ($\equiv$ local Lorentz frame if orthonormal coordinates are used) mathematical representation of      see “Ricmann normal coordinates” “Lorentz local”
Inertial reference frame, local ($\equiv$ local Lorentz frame if orthonormal coordinates are used) used in analysis of tide-producing acceleration      29—37
Infinitesimal Lorentz transformation      see “Lorentz transformation infinitesintal”
Infinity, regions of in asymptotically flat spacetime $I^+, I^0, I^-, \mathscr I^+, \mathscr I^-$ detined      917—918
Infinity, regions of in asymptotically flat spacetime conformal transformations of      919—921 936
Infinity, regions of in asymptotically flat spacetime conformally transformed coordinate diagrams      919—921
Initial-value data as uniquely determining future, Hilbert on      434
Initial-value data for geometrodynamics compatible on spacelike slice      489—490
Initial-value data for geometrodynamics count of      529—533
Initial-value data for geometrodynamics improperly posed data      534—535
Initial-value data for geometrodynamics in extensor      Chap. 21
Initial-value data for geometrodynamics on characteristic surface      490
Initial-value data for geometrodynamics required for dynamics      484—485
Initial-value data for geometrodynamics separation of time and dynamic data      533
Initial-value data for geometrodynamics thin-sandwich conjecture      534
Initial-value data for geometrodynamics time and dynamic data mixed in 3-geometry      533
Initial-value data for geometrodynamics York’s formulation of gives conformal 3-geometry      540—541
Initial-value data for geometrodynamics York’s formulation of gives conjugate York momenta      542
Initial-value data for geometrodynamics York’s formulation of gives York’s curvature      541
Initial-value data for geometrodynamics York’s formulation of on hypersurface of zero or constant extrinsic time      539—540
Initial-value data for geometrodynamics York’s formulation of sketched      490
Initial-value data formulation of on characteristic hypersurface      554
Initial-value data mystery of what fixes them      555
Initial-value equations for geometrodynamics      515—516 519 525 531—535
Initial-value problem for geometrodynamics other symmetric cases as route to cosmology      537 (see also “Geometrodynamics” “Integrating
Initial-value problem for geometrodynamics other symmetric cases Friedmann universe      537 705f 727f 744
Initial-value problem for geometrodynamics other symmetric cases mixmaster universe      537 806—811
Initial-value problem for geometrodynamics other symmetric cases pulsating star      691—694
Initial-value problem for geometrodynamics other symmetric cases waves with cylindrical symmetry      537
Initial-value problem for geometrodynamics other symmetric cases waves with spherical symmetry      537
Initial-value problem for geometrodynamics thin-sandwich formulation of as guide in counting degrees of freedom      529—533
Initial-value problem for geometrodynamics thin-sandwich formulation of as guide to geometrodynamics      529—531
Initial-value problem for geometrodynamics thin-sandwich formulation of as option in specifying data      529
Initial-value problem for geometrodynamics thin-sandwich formulation of electrodynamic analog      529
Initial-value problem for geometrodynamics time-antisymmetric case      490
Initial-value problem for geometrodynamics time-antisymmetric case formulated      536
Initial-value problem for geometrodynamics time-antisymmetric case mass of wave is positive      536
Initial-value problem for geometrodynamics time-antisymmetric case wave equation for conformal correction factor      536
Initial-value problem for geometrodynamics time-symmetric case      490
Initial-value problem for geometrodynamics time-symmetric case formulated      535
Initial-value problem for geometrodynamics time-symmetric case gravitational wave amplitude in      536
Initial-value problem for geometrodynamics time-symmetric case role of base metric in      535
Initial-value problem for geometrodynamics time-symmetric case wave equation for conformal correction factor      535
Initial-value problem for geometrodynamics York’s formulation of existence and uniqueness of solutions      543
Initial-value problem for geometrodynamics York’s formulation of wave equation for conformal factor      542
Initial-value theory for electrodynamics      523f 526 529ff “Integrating
Injection energy      561 562
Integral conservation law      146
Integrating forward in time geometrodynamic equation compared to electrodynamics      527—528
Integrating forward in time geometrodynamic equation options in choice of lapse and shift      527—528
Integrating forward in time geometrodynamic equation statement of initial data in      526—527
Integrating forward in time Maxwell’s equations as guide to geometrodynamics      527 (see also “Electrodynamics” “Geometrodynamics” “Initial
Integrating forward in time Maxwell’s equations options in choice of potential      527
Integrating forward in time Maxwell’s equations statement of initial data in      527
Integration of differential forms      94—97 150f
Integration of tensors, in track-1 language      147ff (see also “Stokes’ theorem” “Gauss’s “Volume”)
Interference, constructive and destructive      419 423f 1185—1187
Interferometry, used to measure deflection of radio waves by sun      1104—1105
Intergalactic matter, mean density of      712 761f
Interval, Lorentz      19—23
Intrinsic curvature      see under “Curvature formalism
Intrinsic time of Sharp, Baierlein, and Wheeler      487 490
Invariants of electromagnetic field      110 480—483
Invariants of Riemann tensor      491
Irreducible mass of a black hole      889f 913
Isolated system      454
Isometry      652—653 (see also “Killing vector fields”)
Isostasy      402
Isothermal star clusters      685ff
Isotropic coordinates for a star      595
Isotropic coordinates for Schwarzschild geometry      840
Isotropic coordinates in post-Newtonian approximation      1097
Isotropy and homogeneity of universe adiabatic cooling of anisotropy      802
Isotropy and homogeneity of universe in extensor      Chap 30
Isotropy and homogeneity of universe man could not exist in an anisotropic universe      939
Isotropy and homogeneity of universe pair creation by anisotropy energy      769 803—804
Isotropy and homogeneity of universe viscous dissipation of anisotropy      769 802—803
1 2 3 4 5 6 7 8 9 10
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå