Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gravitation

Àâòîðû: Misner C.W., Thorne K.S., Wheeler J.A.

Àííîòàöèÿ:

Put as simply as possible, this is a book on Einstein's theory of gravity (general relativity). It is the first textbook on the subject that uses throughout the modern formalism and notation of differential geometry, and it is the first book to document in full the revolutionary techniques developed during the past decade to test the theory of general relativity.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ãðàâèòàöèîííîå âçàèìîäåéñòâèå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 1278

Äîáàâëåíà â êàòàëîã: 22.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Euler equation of hydrodynamics applied to a pulsating star      693—694
Euler equation of hydrodynamics in curved spacetime      564
Euler equation of hydrodynamics in flat spacetime      152f
Euler equation of hydrodynamics in PPN formalism      1088
Euler pngles      243
Euler relation, on vertices, edges, faces      1175
Eulerian perturbations      690—691
Events      6 9f
Events as classical, not valid quantum concept      1184
Events identifiability as key      225
Expansion of universe      (see under “Cosmology”)
Experimental tests of general relativity Beall test of uniqueness of free fall      17
Experimental tests of general relativity black holes      1047
Experimental tests of general relativity catalogued      1129
Experimental tests of general relativity constancy of fundamental constants      1061—1063
Experimental tests of general relativity cosmological observations used for      707 1047 1061 1067
Experimental tests of general relativity deflection of electromagnetic waves by sun      1048 1069 esp.
Experimental tests of general relativity Earth tides due to galaxy and to motion relative to preferred frame      1123—1124
Experimental tests of general relativity Earth’s failure to collapse      398f
Experimental tests of general relativity Earth’s rotation rate, periodicities in      1124—1125
Experimental tests of general relativity Eoetvoes — Dicke experiment      see “Eoetvoes — Dicke experiments”
Experimental tests of general relativity ether-drift experiments      1064—1065
Experimental tests of general relativity expansion of universe      707
Experimental tests of general relativity geophysical observations      1061 1123—1125
Experimental tests of general relativity gravitational (Cavendish) constant, variations of      (see under “Cavendish gravitational constant”)
Experimental tests of general relativity gravitational waves      1047 1072
Experimental tests of general relativity gyroscope precession      1117—1120
Experimental tests of general relativity Hughes — Drever experiment      1064
Experimental tests of general relativity in extensor      Chaps 38 39 40
Experimental tests of general relativity isotropy of space      1064
Experimental tests of general relativity Kreuzer experiment      1125
Experimental tests of general relativity laser ranging to moon      1048 1130—1131
Experimental tests of general relativity lunar orbit      1048 1116 1119 1127 1128—1131
Experimental tests of general relativity Nordtvedt effect      1128—1131
Experimental tests of general relativity null experiments      1050 1064
Experimental tests of general relativity perihelion shift      1110—1116
Experimental tests of general relativity planetary orbits, deviations from geodesic motion      1111 1126—1131
Experimental tests of general relativity planetary orbits, periodic effects in      1069 1111
Experimental tests of general relativity Pound — Rebka — Snider experiment      1056—1058
Experimental tests of general relativity preferred-frame effects      1098 1113—1114
Experimental tests of general relativity pulsars used for      1047
Experimental tests of general relativity quasars used for      1047 1048 1061 1101 1103 1104—1105
Experimental tests of general relativity radar time delay      1048 1103 esp.
Experimental tests of general relativity redshift, due to “ether drift”      1064—1065
Experimental tests of general relativity redshift, gravitational      see “Redshift gravitational”
Experimental tests of general relativity singularities in spacetime, existence of      939
Experimental tests of general relativity Turner — Hill experiment      1064—1065 (see also “Parametrized post-Newtonian formalism” “Dicke’s “Experimental
Experimental tests of general relativity “de Sitter effects” in Earth-moon orbit      1116 1119
Experimental tests of special relativity      1054—1055
Exterior calculus application to electromagnetism      Chap 4
Exterior calculus extended to vector- and tensor-valued forms      348—363 (see also “Forms differential”;
Exterior calculus introduction to and detailed summary of      91—98
Exterior calculus largely unaffected by presence or absence of metric      233
Exterior derivative applied twice in succession, automatically gives zero      116 118
Exterior derivative as operation to augment the order of a form      114—120
Exterior derivative extended to vector- and tensor-valued forms      348—363 Chap
Exterior derivative introduced, for scalar fields      93f
Exterior derivative results of      119
Exterior product      see «Wedge product”
External field of a gravitating source      see “Asymptotically fiat spacetime geometry”
Extrema, number of      318
Extreme Kerr — Newman geometry, as limiting case of Kerr — Newman      878
Extremization, of integral for proper time      316—324
Extrinsic curvature      see “Curvature formalism
Extrinsic time, of Kuchaf and York      487 490
Factor-ordering problems      388—391
Faraday      (see under “Electromagnetic field”
Faraday stresses      140f 481
Fast-motion approximation      1072—1073
Fermat’s principle in a static gravitational field      1106 1108
Fermi energy, m neutron stars and white dwarfs      599—600
Fermi gas, ideal      565 599
Fermi normal coordinates      332
Fermi — Walker transport      165 170f 1117
Feynman’s sum over histories      320 419 499f
Field equations      see “Einstein field equations”
Fields, long range (i.e., zero rest mass) direct coupling vs. indirect coupling      1063—1064
Fields, long range (i.e., zero rest mass) direct coupling, experimental searches for      1063—1065
Fields, long range (i.e., zero rest mass) indirect coupling      1068 1069
Fields, long range (i.e., zero rest mass) radiation fields must have $l\ge S$      866 977
Fields, long range (i.e., zero rest mass) role in slightly nonspherical collapse of a star      866
Fields, long range (i.e., zero rest mass) spin of deduced from transformation laws for polarization of waves      954
Final state of stellar evolution      624 (see also “White dwarfs Neutron Black
Fine-structure constant, electromagnetic, constancy of      399 1061
First law of thermodynamics application to closed Friedmann universe      705 726ff
First law of thermodynamics application to collapsing stars      858
First law of thermodynamics application to pulsating stars      692
First law of thermodynamics for a fluid in adiabatic flow      563
First law of thermodynamics general formulation for a simple fluid      559—560
First law of thermodynamics in PPN formalism      1088
First law of thermodynamics role in laws of hydrodynamics      564
Fixed-point theorem      978
Flat spacetime      see “Special relativity’; “Lorentz geometry”
Flatness does not imply Euclidean topology      284
Flatness equivalent to zero Riemann curvature      283—284
Flatness local, accompanied by global curvature      190—191
Flatness of space slices in Newton — Cartan spacetime      291—295
Flatness test for      30
Flatness, asymptotic      see “Asymptotically fiat spacetime”
Fluctuations      see “Quantum fluctuations”
Fluid      see “Hydrodynamics”
Flux of energy, defined      782
Flux of particles      see “Number-flux vector”
Focusing of null rays      582f 932 1165
Forms, differential 1-forms algebra of, for general basis      202—203
Forms, differential 1-forms basis      see «Basis 1-forms”
Forms, differential 1-forms closed      123
Forms, differential 1-forms curl-free      123
Forms, differential 1-forms defined      56f
Forms, differential 1-forms illustrated      55—58
Forms, differential 1-forms in metric-free context      226 231—233
Forms, differential 1-forms motivated      53 55f
Forms, differential 1-forms pictorial addition of      57
Forms, differential 1-forms rotation-free      123—124
Forms, differential 1-forms with rotation      123
Forms, differential 1-forms “corresponding” tangent vector      58f 62 310
Forms, differential 2-forms as machines to construct “number of tubes” from oriented surface      105—107
Forms, differential 2-forms basis 2-forms, in direct and dual labeling      151
Forms, differential 2-forms general, expressible as sum of two simple 2-forms      103 122f
Forms, differential 2-forms simple      103
Forms, differential 2-forms used in description and calculation of curvature      337—340 348—363
Forms, differential as intersecting stacks of surfaces      99—120
Forms, differential closed forms distinguished from general forms      114—119
Forms, differential list of all definitions and formulas      91—98
Forms, differential machinery for working with, illustrated in context of electromagnetism      Chap 4
Forms, differential operations on      see “Duality Exterior Integration”
Forms, differential ordered progression of (1-form, 2-form, . . .)      114—120
Forms, differential vector-valued and tensor-valued forms      348—363 and chapter 15
Four-momentum      see «under
Four-velocity      see “Velocity 4-vector”
Friedmann cosmologies      (see under “Cosmological models”)
Frobenius theorem, on rotation-free 1-forms      124
Frozen star      see “Black hole”
Galaxies classification of      786f 789 793 795
Galaxies distribution of homogeneity vs. hierarchy      703
Galaxies evolution of      791
Galaxies fraction of sky covered by      799
Galaxies nuclei of black holes in      887
Galaxies nuclei of explosions in      634
Galaxies nuclei of relativistic star clusters in      634 687
Galaxies origin of      766 769f
Galaxy, The (Milky Way)      756—761
Galaxy, The (Milky Way) metric correction at      459
Galaxy, The (Milky Way) oscillations of star through disc, analyzed      318—319
Galilean coordinates      289 291—298 414
Gamma-ray observations, as tests of cosmological models      770
Gauge transformations and invariance in electromagnetism      89
Gauge transformations and invariance in linearized gravitation theory (flat-space spin-2 theory)      180 182f 440f 463
Gauge transformations and invariance in perturbations of curved spacetime      967ff (see also “Lorentz gauge”)
Gauss — Bonnet theorem, for 2-sphere topology      309
Gauss — Codazzi relations      514ff
Gauss — Weingarten equations, for 4-transport in terms of extrinsic curvature      512
Gaussian flux integrals for charge      461
Gaussian flux integrals for energy-momentum and angular momentum      460—464
Gaussian normal      516 518 715ff
Gaussian normal coordinate system      552 717
Gauss’s theorem      148—151
Gauss’s theorem applied to conservation of energy-momentum      146 152
Gauss’s theorem as special case of generalized Stokes theorem      97
General covariance, principle of      80 431f
General relativity      (see also “Einstein field equation” “Equivalence “Experimental “Geometrodynamics”)
General relativity epitomized briefly      130 (line 1) 164 190f 266 289
General relativity foundations developed in details      Chaps. 16 17
Generating function, for transformation from one canonical representation of a 2-form to another      122—123
Geodesic deviation double role: defines curvature, predicts motion      72
Geodesic deviation elementary introduction to      29—37
Geodesic deviation equation of, derived      265—275
Geodesic deviation equation of, presented in track-1 language      218ff
Geodesic deviation in gravitational-wave detector      444—445 950—955 1011f
Geodesic deviation in spacetime of Newton — Cartan      272f 293
Geodesic equation      211 262ff
Geodesic motion departures from      (see under “Equations of motion”)
Geodesic motion experimental tests of      1055—1060
Geodesic separation vector      265—270
Geodesies affine parametrization of      244—246
Geodesies as curves of extremal proper length      314—321 324
Geodesies as straight lines of local Lorentz geometry      312—315 321—324
Geodesies as straight-on parallel transport      245
Geodesies as tools for building ideal rods and clocks      396—399
Geodesies as world lines of freely falling particles      4 196
Geodesies can’t change from timelike to null or spacelike en route      321
Geodesies one-parameter family of      265—267
Geodesies simple examples great circle on sphere      211f
Geodesies simple examples straight line on plane, in polar coordinates      213
Geodesies track-1 introduction to      211
Geodesies track-2 treatment, in absence of metric      244—247
Geodesies “dynamic” variational principle for      322f
Geometric objects      48
Geometric objects absolute vs. dynamic, and “no prior geometry”      431
Geometric objects spinor representation of      1154f (see also specific objects e.g. “Vectors” “Forms” “Connection”)
Geometric optics as limiting case of physical optics      412
Geometric optics basic concepts of      571—582
Geometric optics basic concepts of affine parameter of ray      575
Geometric optics basic concepts of angular frequency      575
Geometric optics basic concepts of bundle of rays      581—582
Geometric optics basic concepts of electric field      579
Geometric optics basic concepts of magnetic field      579
Geometric optics basic concepts of phase      571 572 574—575
Geometric optics basic concepts of photons      580 581
Geometric optics basic concepts of polarization vector      573 574—575 577 578 581
Geometric optics basic concepts of rays      573 574—575
Geometric optics basic concepts of scalar amplitude      573
Geometric optics basic concepts of stress-energy tensor      579
Geometric optics basic concepts of summarized      578—580
Geometric optics basic concepts of wave vector      573 574—575
Geometric optics basic references on      570
Geometric optics breakdown of related to pair creation      803—804
Geometric optics conditions for validity of      571
Geometric optics examples of applications of      570
Geometric optics focusing equation      582f
Geometric optics geometry of a bundle of rays      581—582
Geometric optics in extenso, for electromagnetic waves      570—583
Geometric optics in spinor language      1165
Geometric optics laws of derived from wave equation and Lorentz gauge condition for vector potential      573 576—577
Geometric optics laws of described qualitatively      571
Geometric optics laws of photon interpretation of      580
Geometric optics laws of post-geometric optics corrections      572f 803f
Geometric optics laws of summarized in detail      578—580
Geometric optics two-length-scale expansion underlying      571—572
Geometric units factors of conversion to and from      36 638
Geometric units introduced      27ff 36
Geometrodynamics (dynamics of geometry)      (see also “Einstein field equation” “General “Initial “Integrating
Geometrodynamics (dynamics of geometry) analogies with electrodynamics      364 367—370
Geometrodynamics (dynamics of geometry) Arnowitt, Deser, Misner formulation of 3-geometry fixed at surfaces in      522
Geometrodynamics (dynamics of geometry) Arnowitt, Deser, Misner formulation of action principle in      521
Geometrodynamics (dynamics of geometry) Arnowitt, Deser, Misner formulation of electrodynamic analog      522—524
Geometrodynamics (dynamics of geometry) Arnowitt, Deser, Misner formulation of geometrodynamic field momenta for      521
Geometrodynamics (dynamics of geometry) Arnowitt, Deser, Misner formulation of in brief      486—490
Geometrodynamics (dynamics of geometry) Arnowitt, Deser, Misner formulation of split of variables made by      525—526
Geometrodynamics (dynamics of geometry) built-in plan: initial data plus time evolution      408f 484f
Geometrodynamics (dynamics of geometry) causal propagation of effects in      554
Geometrodynamics (dynamics of geometry) Dirac formulation of      520
Geometrodynamics (dynamics of geometry) ideas of, in brief      4f
Geometrodynamics (dynamics of geometry) illustrated in action, for Schwarzschild geometry      528
Geometrodynamics (dynamics of geometry) some history of      486—488
Geometrodynamics (dynamics of geometry) subject to standard quantum indeterminism      1182
Geometry      see “Spacetime” “Euclidean” “Lorentz” “Differential” “Affine” “Riemannian” “Prior” “Curvature”
Geon      886
Global techniques of analyzing spacetime structure attempt to combine with local methods      806 (see also “Infinity regions
Global techniques of analyzing spacetime structure basic references on      916—917
Global techniques of analyzing spacetime structure examples of      926—931
Global techniques of analyzing spacetime structure in extenso, Chap      34
Globular clusters      757
Globular clusters black holes in      887
Gowdy metrics      804
Gradient in a curved manifold      208—212 259—261 derivative”)
Gradient of a scalar, in flat spacetime      59f
Gradient of a tensor, in flat spacetime      81f
Gradiometer, gravity      400—403
Gravitation      13 163—164
Gravitation local description in terms of tide-producing acceleration      29—37
Gravitation, theories of Berginann’s scalar-tensor theories      1049
Gravitation, theories of Birkhoff’s      1067
Gravitation, theories of Cartan — Newton      see “Newton — Cartan theory of gravity”
Gravitation, theories of Cartan’s (general relativity plus torsion)      1049 1068
Gravitation, theories of catalogs of      429
Gravitation, theories of Coleman’s      1114
Gravitation, theories of completeness of      1067 1068
Gravitation, theories of conservative      1093
Gravitation, theories of criteria for viability of      1066—1067
Gravitation, theories of Dicke — Brans-Jordan      1048f 1068f esp. 1093 1098 1122 1127 1129
Gravitation, theories of Dicke — Brans-Jordan cosmological models in      770
Gravitation, theories of general relativity, foundations of      Chaps. 16 17
Gravitation, theories of Kustaanheimo’s      1067
Gravitation, theories of linearized      see “Linearized theory of gravity”
Gravitation, theories of metric      see “Metric theories of gravity”
Gravitation, theories of metric, not encompassed by the 10-parameter PPN formalism      1069
Gravitation, theories of Newtonian      see “Newton — Cartan theory of gravity”
Gravitation, theories of Ni’s      1068f esp 1083 1098 1123 1129
Gravitation, theories of Nordstrem’s      429ff 1049
Gravitation, theories of Papapetrou’s      1124
Gravitation, theories of post-Newtonian      see “Post — Newtonian approximation”; “Post — Newtonian formalism parametrized”
Gravitation, theories of preferred-frame      1083 1093 1098 1123—1125
Gravitation, theories of prior-geometric      429—431 1068 1070—1071
Gravitation, theories of self-consistency of      1066—1067
Gravitation, theories of spin-0 field, in fiat spacetime      178f
Gravitation, theories of spin-1 field, in fiat spacetime      179
Gravitation, theories of spin-2 field, in fiat spacetime      see “Linearized theory of gravity”
Gravitation, theories of Whitehead’s      430 1049 1067 1069 1124
Gravitation-matter "coupling loop," in brief      5 37
Gravitational collapse      see “Collapse gravitational”
Gravitational constant as measure of “metric elasticity of space”      426—428 (see also “Cavendish gravitational constant”)
Gravitational constant measurement of      1121 1123
Gravitational constant value of      29 endpapers
Gravitational lens effect      589 887
Gravitational mass      431
Gravitational potential      see under “Newton — Cartan theory” “Post
Gravitational radiation reaction      see “Gravitational waves”; “Radiation reaction”
Gravitational radius      820—826 (see also “Horizon” “Black “Schwarzschild “Kerr
Gravitational waves exact solutions cylindrical wave      950
Gravitational waves exact solutions plane waves with one state of polarization      957—963 (see also “Plane gravitational waves”)
Gravitational waves exact solutions plane waves with two polarization states      964
Gravitational waves experimental tests of general relativity using      1047 1072
Gravitational waves generation by slow-motion, weak-field sources, assumptions underlying formulas      989 991
Gravitational waves generation by slow-motion, weak-field sources, derivation of formulas      995—1003
Gravitational waves generation by slow-motion, weak-field sources, formula for metric perturbation      991
Gravitational waves generation by slow-motion, weak-field sources, formulas for emitted flux of energy and angular momentum      992
Gravitational waves generation by slow-motion, weak-field sources, formulas for radiation reaction in source      993—994
Gravitational waves generation by slow-motion, weak-field sources, formulas for spectrum in various polarization states      1033 1035
Gravitational waves generation by slow-motion, weak-field sources, formulas for total output of energy and angular momentum      975 992
1 2 3 4 5 6 7 8 9 10
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå