Авторизация
Поиск по указателям
Rivasseau V. — From Perturbative to Constructive Renormalization
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: From Perturbative to Constructive Renormalization
Автор: Rivasseau V.
Аннотация: The last decade has seen striking progress in the subject of renormalization in quantum field theory. The old subject of perturbative renormalization has been revived by the use of powerful methods such as multiscale decompositions; precise estimates have been added to the initial theorems on finiteness of renormalized perturbation theory, with new results on its large order asymptotics. Furthermore, constructive field theory has reached one of its major goals, the mathematically rigorous construction of some renormalizable quantum field theories. For these models one can in particular investigate rigorously the phenomenon of asymptotic freedom, which plays a key role in our current understanding of the interaction among elementary particles. However, until this book, there has been no pedagogical synthesis of these new developments. Vincent Rivasseau, who has been actively involved in them, now describes them for a wider audience. There are, in fact, common concepts at the heart of the progress on perturbative and constructive techniques. Exploiting these similarities, the author uses perturbative renormalization, which is the more widely known and conceptually simpler of the two cases, to explain the less familiar but more mathematically meaningful constructive renormalization.
Язык:
Рубрика: Физика /Квантовая теория поля /Ренормализационная группа /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1991
Количество страниц: 336
Добавлена в каталог: 27.09.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
theory 200—209
1/N expansion 124—130 282—283
Algebraic cluster expansion 163—164
Almost local subgraphs 66
Amplitude 42—48
Amplitude of a Mayer configuration 186
Amplitude of a polymer 178
ASSIGNMENT 63
asymptotic freedom 8—9 123—124 272 291 294
Auxiliary field 283
Bare expansion 113
Battle — Federbush theorem 180—181
BBF cluster expansion, GJS cluster expansion 195
BBF or Brydges — Battle — Federbush cluster expansion 195
beta function 133 141—142 269—271
Bethe — Salpeter equation 199
Bipeds 83—85
Bogoliubov recursion 82—85
Border vertex functions, inside vertex functions 42
Borel plane 56
Borel plane summability 55
BPH theorem 5
BPHZ scheme 86
Bubble, bubble graph 5
Callan — Symanzik function see "Beta function"
Cayley's theorem 49
Classification of forests 94—95
Closed graphs 89 101
Closed graphs forests 101
Closed graphs, gates 216
Closure 101
Cluster expansion 156 171—186
Completely convergent graphs 59
configurations 186
Connected functions 34—35
Constructive renormalization 253—261
Contraction scheme 38
Convergent assignments 74
Convergent assignments, polymers 219
Convergent polymer 219
Coordination number 38
Counterterms 75—85
Cutoffs 27—34
Dangerous forests 92—93
Decay, horizontal 62
Decay, vertical 70
Degree of convergence 41
Diagram 40
Domination 185 221—233 305—308
Effective expansion 111—122
Effective expansion, constants 113 118—119 264—266
Effective expansion, perturbation theory 112
Effective expansion, phase space expansion 252—261
Euclidean field theory 15 20—22
Faddeev — Popov determinant 293
Faddeev — Popov, operator 314—317
Feynman amplitude 42—44
Feynman amplitude, diagram, Feynman amplitude graph 38—40
Feynman amplitude, gauge 292—293
Feynman diagram 40
Feynman gauge 292—293
Feynman — Kac formula 18 20
Forests 86
Free field 16—17 24—26
Garding Wightman axioms 19
Gauge transformations 292
Gauge, non-Abelian Gauge theories 289
Gaussian measure 24—33
Gell-Mann — Low formula 18
Ghosts 293
GJS or Glimm — Jaffe — Spencer cluster expansion 195
graphs 38—42
Gribov problem 309
Gribov problem, copies 309 314—315
Gribov problem, first-region 316—317
Gribov problem, horizon 314
Gribov problem, strong, weak-phenomenon 309—315
Gross — Neveu model 272—288
Hard core interaction 186
Horizontal line, horizontal line direction 64—65
Incidence matrix 38
Index assignment 63
Index assignment, space 63
Infrared 241
Infrared asymptotic freedom 244
instantons 149
Landau gauge 309
Large order behavior 144
Lattice regularization 33—34
Leading-log behavior 6—7
Line, Horizontal line, vertical line 64—65
Lipatov method 146
Lipatov method, upper-bound 153
Local factorial principle 160
Local polymer, renormalized polymer 255
Localization cube 234
Matrix models 125—130
Mayer expansion 186—194
Mayer expansion, configurations 186
Mayer expansion, link 187
Momentum representation 47
Momentum representation, conservation 250—251
Momentum representation, slices 61
Momentum slice decomposition 61—63
Multiscale representation 63
Nelson's bound 202—203
Nevanlinna — Sokal theorem 55
One particle irreducible functions (1PI) 35
Open gates, closed gates 216
Open graphs, gates 216
Open graphs, open graphs quadrupeds 101
Ordered tree 50
Orthogonal polynomials 129
Osterwalder — Schrader axioms 21—22
Overlapping divergences 75
p-particle irreducibility 195—199
Pair of cubes cluster expansion 174
Parametric representation 50—53
Perturbative renormalization 74—110
Phase space 63
Phase space, expansion 210—271
Planar theory 123
Planar theory, planar theory graphs, planar theory Feynman rules 125—127
Polymer 178
Polymer, bound 180
Polymer, i-polymers 219
Power counting 70
Pressure 172
Production index 230—232
Propagator 24 28 34 61—62 156 293 303
Propagator, domain 157—158
pth order cluster expansion 195—199
Quadrupeds 85
R operator 85
Renormalization group 112—113
Renormalized constants 121—122
Renormalon 6—8 81
Running constants see "Effective constants"
S-matrix 17
Safe forests 93—94
Schwinger functions 20
Slavnov — Taylor identities 302—304
Sobolev inequality 147
Strong connection 216
Strongly connected domains 217
Superficial degree of convergence 41
Symanzik polynomials 50—51
Symmetry factor, number 39—40 43—44
Thirring model (massive) 272
TREE 48—50
Triviality 7 268—271
Uniform BPH theorem 88
Uniform Weinberg theorem 65
Useful counterterms, useless counterterms 8 79—80
Useful, useless counterterms 79—80
Usefully renormalized amplitudes 100 110
Vector models 127 272
Vertex functions 35
Vertex, domain 154
Vertical cluster expansion 212—216
Vertical line, decoupling 212—220
Vertical line, direction 64—64 65
Vertical line, expansion 156
Volume effect 183
Ward identities 302—304
Wave function constant 23
Weak coupling, triviality 269
Weinberg theorem 59—60
Wick ordering 200
Wiener measure 26
Wiener measure, paths 156
Yang — Mills action 292
Zimmermann's forests 85—86
Zimmermann's forests, formula 85
Реклама