|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers |
|
|
Ïðåäìåòíûé óêàçàòåëü |
, calculation of 246p 411p
Abel equation 34p
Abel formula for Wronskian for difference equations 42 43
Abel formula for Wronskian for differential equations 9 32p 33p
Abelian theorems 127
Airy equation, differential equation 13 151 156 506 569
Airy equation, eigenvalue problem for 28 521—522
Airy equation, inhomogeneous 105 106f 141—142p
Airy equation, local analysis, 100—102 494—495
Airy equation, local analysis, 107—111
Airy equation, local analysis, 67—68
Airy equation, Stokes lines for 116—118 130—131
Airy functions Ai and Bi as Bessel functions 569
Airy functions Ai and Bi in one-turning-point problems 506—510 515—518 529—530 535—536
Airy functions Ai and Bi, asymptotic series, 100—102
Airy functions Ai and Bi, asymptotic series, 109—111
Airy functions Ai and Bi, asymptotic series, 133—135 142p 570
Airy functions Ai and Bi, definition of 68 69f
Airy functions Ai and Bi, functional relations for 131 569
Airy functions Ai and Bi, integral representations of 313—314p 570
Airy functions Ai and Bi, integrals of, behavior 256—258 308p 309p 364p
Airy functions Ai and Bi, leading asymptotic behaviors, 100 101f 102
Airy functions Ai and Bi, leading asymptotic behaviors, 107—108 108f 109f
Airy functions Ai and Bi, leading asymptotic behaviors, 113—117 133—135
Airy functions Ai and Bi, sector of validity for Bi 115 115f
Airy functions Ai and Bi, Stokes behavior of 130—131 313—314p
Airy functions Ai and Bi, Taylor series for 67—68 569
Almost periodic orbits 186—187 188f 189f
Anharmonic oscillator, classical (Duffing’s equation) 545—551 547f 551f 566—567p
Anharmonic oscillator, quantum 334—335 337—338 353 353t 359—360 366—367p
Anti-Stokes lines 116 (See also “Stokes lines”)
Antiderivative, continuous 3
Antiderivative, discrete 37 53p 54p
Approximants 381 (See also “Pade approximants”)
Arnold — Moser theorem 189 191
Asymptotic expansions see “Asymptotic series”
Asymptotic matching for boundary-layer problems 421—483
Asymptotic matching for integrals 341—349 365—366p 515—519
Asymptotic matching for nonlinear differential equations 421—423 463—479
Asymptotic matching for nonlinear differential equations for WKB problems 504—543
Asymptotic matching for nonlinear differential equations, patching vs. 335—336 499
Asymptotic matching for nonlinear differential equations, principle of 335—336
Asymptotic matching for nonlinear differential equations, techniques of, for differential equations 336—341
Asymptotic matching, existence of matching region 428—430
Asymptotic matching, high-order 337 344—349 428—435 434—437f 438—452 442—444f 449f 478—479 535—536
Asymptotic power series see “Asymptotic series”
Asymptotic relations (asymptotic order relations) for functions with noncoincident zeros 108—109
Asymptotic relations (asymptotic order relations) for oscillatory functions 107—112
Asymptotic relations (asymptotic order relations) in complex plane 112—118
Asymptotic relations (asymptotic order relations), definition of, 78—79
Asymptotic relations (asymptotic order relations), definition of, 78—79
Asymptotic relations (asymptotic order relations), definition of, O 318
Asymptotic relations (asymptotic order relations), differentiation of 127—128 145p
Asymptotic relations (asymptotic order relations), integration of 81 139p 142p
Asymptotic relations (asymptotic order relations), sector of validity for 113—118
Asymptotic relations (asymptotic order relations), Stokes phenomenon and subdominance 115—118
Asymptotic series for Airy functions 100—102 109—111 133—135 142p 570
Asymptotic series for Bessel functions 111—112 112f 228—229 294 572—573
Asymptotic series for digamma function 309p 575
Asymptotic series for exponential integrals 576
Asymptotic series for Fourier integrals 276—277 281—287
Asymptotic series for logarithmic integral function 310p
Asymptotic series for modified Bessel functions 93—94 144p 265 571
Asymptotic series, arithmetical operations on 125—126
Asymptotic series, construction of analytic function asymptotic to 144p
Asymptotic series, construction of continuous function asymptotic to 119—120 119f
Asymptotic series, convergent and divergent 118—120
Asymptotic series, definition of 89 118
Asymptotic series, derived by integration by parts 252—261 276—277
Asymptotic series, derived by Laplace’s method and Watson’s lemma 262—265
Asymptotic series, derived by steepest-descents method 281—287 294
Asymptotic series, derived from difference equations 218—219 225—231
Asymptotic series, derived from linear differential equations 84—87 90—94 98—101 104—105 109—111 129 133—136
Asymptotic series, derived from nonlinear differential equations 150 154—155 157—158 165—167
Asymptotic series, differentiation of 127—128
Asymptotic series, equating coefficients in 125
Asymptotic series, integration of 126
Asymptotic series, nonuniqueness of (subdominance) 123—124
Asymptotic series, optimal asymptotic approximation for 94—102 122—124 222 223f 224t 242
Asymptotic series, pfor parabolic cylinder functions 98—100 131—133 265 574
Asymptotic series, proof of existence of 128—129 133—136 144
Asymptotic series, Stieltjes series as 78 120—123 260
Asymptotic series, Stirling series for gamma function 218—220
Asymptotic series, Taylor series vs. 90—91 92f 118—119 220 221t 222 254f 255
Asymptotic series, uniqueness of coefficients 89—90 124—125
Asymptotic summation of series 376 379 380t
Autonomous equations, definition of 24
Autonomous equations, reduction of order for 24—26 156
Autonomous systems 171—197
Autonomous systems with almost periodic orbits 186—187 188f 189f
Autonomous systems, C-systems 192—193 204p
Autonomous systems, critical points of 173—177
Autonomous systems, definition of 171
Autonomous systems, Duffing’s equation 546 547f
Autonomous systems, Hamiltonian 189—191 189f 190f 204p
Autonomous systems, Henon and Heiles, example of 188—190 189f 190f
Autonomous systems, higher-dimensional 185—197
Autonomous systems, linear 177—178
Autonomous systems, Lorenz model 194—195 194—197f 204p
Autonomous systems, one-dimensional 174—175
Autonomous systems, predator-prey 179—183 180—182f
Autonomous systems, random behavior in 188—189 190f 191f 192—195 195—197f
Autonomous systems, Rayleigh oscillator 468—479 476—478f 483p 554—556 556f 557f
Autonomous systems, Toda lattice 187 188f 190 203p
Autonomous systems, two-dimensional 175—185 468—479 546—547
Autonomous systems, Van der Pol equation 202p 483p 567p
Averaging, method of 566p
Bernoulli equations, difference 57p
Bernoulli equations, differential 20 21 24
Bernoulli numbers 242p 305 306 314p 379
Bernoulli polynomials 305 315p
Bernoulli’s method for finding roots of a polynomial 241p
Bessel equation, differential equation 14 111—112 143p 572
Bessel equation, differential equations equivalent to 322 573
Bessel equation, local analysis 111—112
Bessel equation, modified see “Modified Bessel equation”
Bessel functions and , Airy functions as 569
Bessel functions and , asymptotic series, 111—112 112f294
Bessel functions and , asymptotic series, 228—229 230t
Bessel functions and , asymptotic series, 572—573
Bessel functions and , difference equation for 55p 228 243p 573
Bessel functions and , differential equations for 322 572 573
Bessel functions and , Frobenius series for 572
Bessel functions and , functional relations for 143p 572
Bessel functions and , generating function for 55p 573
Bessel functions and , integral representation for 280 291 293 298 309p 312p 573
Bessel functions and , leading asymptotic behaviors, 111 291 293—294 309p
Bessel functions and , leading asymptotic behaviors, ( and ) 280 298—299 312p
Bessel functions and , modified see “Modified Bessel functions”
Bessel functions and , optimal asymptotic approximation to 112 112f 113t
Bessel functions and , Taylor series for 143p
Bessel functions and , uniform WKB approximation to 541p
Binomial theorem 204f 419
Blasius equation 34p
Borel summation 381—383 406 412p
Borel summation, generalized 382
Boundary layers, absence of 452
Boundary layers, definition of 326 327f 419—420 420f
Boundary layers, internal 455—463 466—468 469—475f 485 541—542p
Boundary layers, local breakdown at 484—485
Boundary layers, location of 425—426
Boundary layers, mathematical structure of 426—430
Boundary layers, multiple 437—438 439f" 440f" 446—455 449f" 458—460 464—475 465f 467—478f 485
Boundary layers, nested 453—455 481p
Boundary layers, thicknesses of 420 426 431 450 454 463 473 477
Boundary layers, thicknesses of 421
Boundary layers, thicknesses of 453 454
Boundary layers, thicknesses of 437—439 442—443 447 456 465 466
Boundary layers, thicknesses of 479 480p
Boundary layers, thicknesses of how to determine 435—437
| Boundary-layer problems with coordinate singularity 452—453
Boundary-layer problems, absence of boundary layers 452
Boundary-layer problems, Carrier’s problem 464—475
Boundary-layer problems, exactly-soluble 326 327f 419—420 426—430
Boundary-layer problems, internal 455—463 466—475 541—542p
Boundary-layer problems, limit cycle of Rayleigh oscillator 468—479 483p
Boundary-layer problems, linear, fourth-order 449—452
Boundary-layer problems, linear, second-order 326 327f; 424f; 488—490 559—560
Boundary-layer problems, linear, third-order 446—449
Boundary-layer problems, mathematical structure of 426—430
Boundary-layer problems, nonlinear, first-order 421—422 422f 423f
Boundary-layer problems, nonlinear, second-order 463—479 483p
Boundary-layer theory 417—483
Boundary-layer theory as singular perturbation theory 326 430
Boundary-layer theory for nonlinear equations 421—422 422—423f 463—479 483p
Boundary-layer theory in higher order 428—435 434—437f 440—452 442—444f 449f 478—479
Boundary-layer theory with underdetermined or overdetermined solutions 461—467 465f 467—475f 482p
Boundary-layer theory, failure of 461—463 467 485 487
Boundary-layer theory, inner, outer, and intermediate limits in 426—430
Boundary-layer theory, internal boundary layers 455—463 466—475
Boundary-layer theory, introductory discussion 326 327f 417—426
Boundary-layer theory, multiple-scale theory vs. 559—560
Boundary-layer theory, uniform approximation in 425 430 433
Boundary-layer theory, WKB theory vs. 484—485 488—490 498 503—505
Boundary-value problems, for difference equations, eigenvalue 47—49 56p 231—233
Boundary-value problems, for difference equations, linear 39—40
Boundary-value problems, for difference equations, local analysis of 231—233
Boundary-value problems, for difference equations, well-posed 43 55p
Boundary-value problems, for differential equations, asymptotic matching for 336—341
Boundary-value problems, for differential equations, boundary-layer structure in linear 326 327f 419—420 422—463 488—490
Boundary-value problems, for differential equations, boundary-layer structure in nonlinear 463—479
Boundary-value problems, for differential equations, definition of 6—7
Boundary-value problems, for differential equations, eigenvalue see “Eigenvalue problems”
Boundary-value problems, for differential equations, existence and uniqueness of solutions to 7 10—11
Boundary-value problems, for differential equations, Green’s function solution of 19
Boundary-value problems, for differential equations, local analysis of linear 133 248
Boundary-value problems, for differential equations, local analysis of nonlinear 167—172
Boundary-value problems, for differential equations, multiple-scale analysis of 559—560
Boundary-value problems, for differential equations, patching used to solve 335—336
Boundary-value problems, for differential equations, well-posed 10—11
Boundary-value problems, for differential equations, WKB analysis of 326—327 328f 485 487—492 497—505 511 511—514f 518t 519—523 537—539
C-systems 192—193 204p
Carleman condition 410 415p 416p
Carlini — Green — Liouville approximation see “Exponential substitution”
Casoratian see “Wronskian”
Centers, almost periodic behavior near 186—187 188f 189f
Centers, higher-dimensional 186—188
Centers, random behavior near 188—189 190f 191f 192—195 195—197f
Centers, random behavior near spurious 184—185
Centers, two-dimensional 173f 177—179 185
Completeness 351
Complex plane, asymptotic relations in 112—118
Complex plane, asymptotic series in 130—136
Complex plane, differential equations in 29—30
Complex plane, Pade approximants in 383—410
Complex plane, physical optics approximation in 54lp 542p
Complex plane, spontaneous singular points in 149
Complex plane, steepest descents, method of, in 280—302
Complex plane, WKB theory in 54lp 542p
Connection formulas 509 511—513 529—530
Constant-coefficient equations, difference 40—41 54—55p
Constant-coefficient equations, differential 11—12 32p 545
Constant-phase paths 282—287 (See also “Steepest descents method
Constants of integration 3 5—6
Constants of summation 37 38
Continued fractions for Stieltjes function 396 406—407
Continued fractions, algorithm for computing coefficients of 397—398
Continued fractions, algorithm for evaluating 398—399
Continued fractions, definition of 395
Continued fractions, examples of 395—396 413p
Continued fractions, Pade approximants and 396—398
Continued function representations, algorithms for computing 399—400 413p
Continued function representations, exponentials 147 196p 399 413p 414p
Continued function representations, fractions 395—400 413p
Continued function representations, logarithms 399 413p 414p
Continued function representations, square roots 245p 399 413p
Controlling factors, from difference equations of gamma function 223
Controlling factors, from difference equations, controlling factors of differential equations vs. 214—215
Controlling factors, from difference equations, dominant-balance method used to find 209 214 218 229 232—233
Controlling factors, from difference equations, methods for finding 214—218
Controlling factors, from differential equations see “Leading asymptotic behaviors; Dominant balance method
Controlling factors, from differential equations, definition of 79—80
Controlling factors, from differential equations, exponential substitution used to find 80—81 84 87 88 90—91 97
Controlling factors, from differential equations, geometrical optics approximation and 494
Convergence, acceleration of 369—376
Convergence, acceleration of, asymptotic summation of series 376 379 380t
Convergence, acceleration of, generalized Shanks transformation 389—392
Convergence, acceleration of, Richardson extrapolation 375—376 377t 378t
Convergence, acceleration of, Shanks transformation 369—375
Cramer’s Rule 9 352
Critical points in phase space, centers 173f 177—179 180f 185—188
Critical points in phase space, definition of 173
Critical points in phase space, nodes 174—175 174f 176 177 181 182f 186 187f
Critical points in phase space, saddle points 174—175 174f 177 179—182 180—182f
Critical points in phase space, spiral points 176—179 181—184 181f 182f 184f 192—194f
Critical points in phase space, stability of 174—177 186 189 191
Critical-point analysis in phase space, one-dimensional 174—176
Critical-point analysis of C-systems 192—193 204p
Critical-point analysis of Hamiltonian systems 189—191 204p
Critical-point analysis of random systems 193—195 204p
Critical-point analysis of random systems, higher-dimensional 185—197 (See also “Autonomous systems; Critical points”)
Critical-point analysis of random systems, two-dimensional 175—183
Critical-point analysis, Arnold — Moser theorem 189 191
Critical-point analysis, energy integrals used in 185
Critical-point analysis, failure of linear 183—185
Critical-point analysis, linear 174—183
Crossing of eigenvalues see “Level crossing”
Crossing of roots of polynomials 328—329 330f 331f 332f 363p
Cycles for difference equations 238 246p
Cycles in phase space 173f 175
Delta function 16 32p 310p 498 526—527 540—541p
Delta function potential 526—527
Determinants for Pade approximants 384 391
Determinants of N x N matrices 352—355 366p
Determinants of solutions to differential and difference equations 8—9 11 32p 41—42
Determinants, difference equations used to compute 55—56p 366p
Determinants, Hill 352
Determinants, Wronskian see “Wronskian”
Difference calculus 36—37 207 211 214—216
Difference equations for Bessel functions 55p 228 243p 573
Difference equations for computing determinants 55—56p 366p
Difference equations for digamma function 214 575
Difference equations for exponential integrals 576
Difference equations for exponential integrals for gamma function 38 223 575
Difference equations for exponential integrals, factor linear difference operators 55p
Difference equations for exponential integrals, Fibonacci numbers 56p
Difference equations for exponential integrals, first-order linear 38—40
Difference equations for exponential integrals, for Hermite polynomials 55p 244p
Difference equations for exponential integrals, for Laguerre polynomials 244p
Difference equations for exponential integrals, for Legendre polynomials 55p 229
Difference equations for exponential integrals, for modified Bessel functions 571
Difference equations for exponential integrals, for parabolic cylinder functions 574
Difference equations for exponential integrals, Frobenius series for 212—214
Difference equations for exponential integrals, functional relations used to solve 40 53 56p 57p
Difference equations for exponential integrals, general solution of 38
Difference equations for exponential integrals, generating functions for 46—47 53 55p 572 573
Difference equations for exponential integrals, homogeneous linear see “Homogeneous linear difference equations”
Difference equations for exponential integrals, inhomogeneous linear see “Inhomogeneous linear difference equations”
Difference equations for exponential integrals, initial-value problems 43 248—249
Difference equations for exponential integrals, integral representations for solutions to 248—249
Difference equations for exponential integrals, leading asymptotic behaviors from 207—210 223 225 227—239 248—249
Difference equations for exponential integrals, local analysis of linear 205—233 248—249
Difference equations for exponential integrals, local analysis of nonlinear 233—239
Difference equations for exponential integrals, Newton’s method 234—235 244p 245p
Difference equations for exponential integrals, nonlinear local analysis of 233—239
Difference equations for exponential integrals, nonlinear methods for solving 40 53 56—57p
Difference equations for exponential integrals, ordinary, regular singular, and irregular singular points of 206—207
Difference equations for exponential integrals, periodic behavior of 238 246p
Difference equations for exponential integrals, random behavior of 237—239 239f
Difference equations for exponential integrals, reduction of order of 43—46 51—52 55p 56p
|
|
|
Ðåêëàìà |
|
|
|