Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers
Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Advanced Mathematical Methods for Scientists and Engineers

Авторы: Bender C., Orszag S.

Аннотация:

This book gives a clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory and explains how to use these methods to obtain approximate analytical solutions to differential and difference equations. These methods allow one to analyze physics and engineering problems that may not be solvable in closed form and for which brute-force numerical methods may not converge to useful solutions. The objective of this book is to teaching the insights and problem-solving skills that are most useful in solving mathematical problems arising in the course of modern research. Intended for graduate students and advanced undergraduates, the book assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations; develops local asymptotic methods for differential and difference equations; explains perturbation and summation theory; and concludes with a an exposition of global asymptotic methods, including boundary-layer theory, WKB theory, and multiple-scale analysis. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach the reader how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions; over 600 problems, of varying levels of difficulty; and an appendix summarizing the properties of special functions.


Язык: en

Рубрика: Математика/Анализ/Асимптотические методы, Теория возмущений/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1978

Количество страниц: 593

Добавлена в каталог: 26.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Trajectories in phase space, local analysis of, near critical points in one dimension      174
Trajectories in phase space, local analysis of, near critical points in two dimensions      176—178
Trajectories in phase space, random behavior of      188—189 190f 191f 192—195 195—197f (see
Transients, definition of      369
Transients, elimination of      369—371 390—392 412p
Translation-invariant equations      see “Autonomous equations”
Transmission coefficient T      527 531 533
Transport equation      487
Trapezoidal rule      411—412p
Tunneling      524—533
Tunneling, exactly soluble model of      526—528
Tunneling, radioactive decay      543p
Tunneling, reflection and transmission coefficients R and T      527 531 533
Tunneling, resonant scattering      542—543p
Tunneling, scattering off peak of potential barrier      531—533 542p
Turning points at $\infty$      568p (see also “One-turning-point problems; Two-turning-point problems”)
Turning points, breakdown of physical optics at      497 568p
Turning points, definition of      497
Two-turning-point problems for tunneling      530—531
Two-turning-point problems, eigenvalue condition      519—523 523t 524—526f 542p
Two-turning-point problems, higher-order eigenvalue condition      537—539
Undetermined coefficients, method of, for inhomogeneous linear difference equations      52—53 56p
Undetermined coefficients, method of, for inhomogeneous linear differential equations      19—20
Uniform asymptotic approximations for boundary-layer problems      425 430 433—434 434f 435f 438 440f 441 442—445f 448—449 449f 458 459f 460 460f 464f 466 477f 560
Uniform asymptotic approximations for WKB problems      488 490 498—504 500—505f 510—511 511—514f
Uniqueness theorems      see “Existence and uniqueness theorems”
van der Pol equation      202p 483p 567p
Variation of parameters for inhomogeneous linear difference equations      49—51 56p
Variation of parameters for inhomogeneous linear differential equations      15 18—19 32p 103—104
Variation of parameters in matrix form      201p
Variation of parameters, Green’s functions vs.      18—19 498
Vitali’s theorem      416p
Watson’s lemma      263—265 274 281 284 382
Wave function      525—526 543p
Waves, right-moving and left-moving      524—529 533
Weber — Hermite equation      see “Parabolic cylinde r equation”
Weierstrass $\mathcal{P}$ function      161
Weight functions for Stieltjes function      121
Weight functions for Sturm — Liouville problem      29
Well-posed (ill-posed) boundary-value and initial-value problems for difference equations      43
Well-posed (ill-posed) boundary-value and initial-value problems for differential equations      9—11 32p
Wilkinson, polynomial example of      329
WKB problems, boundary-layer problems solved as      488—490 541—542p
WKB problems, exactly soluble      326—327 328f 485 487
WKB problems, Green’s function      498—504 540—541p
WKB problems, higher-order Schrodinger equation      496—497 543p
WKB problems, inhomogeneous linear differential equations      497—504 500—505f
WKB problems, one-turning-point problem      504—519 511—514f 529—530 532—536 541p
WKB problems, oscillator with slowly varying frequency      556 558—559
WKB problems, scattering problems      531—533
WKB problems, second-order Schrodinger equation      486—488 489f
WKB problems, Sturm — Liouville problem      490—491 491f 492f 492t
WKB problems, tunneling problems      524—533
WKB problems, two-turning-point eigenvalue problems      519—523 523t 524—526f 537—539 542p
WKB series (WKB approximation; WKB expansion), conditions for validity of      493—497
WKB series (WKB approximation; WKB expansion), definition of      486—487
WKB series (WKB approximation; WKB expansion), eikonal equation      487
WKB series (WKB approximation; WKB expansion), geometrical optics approximation      494—495
WKB series (WKB approximation; WKB expansion), higher-order terms      487 534—539 539p 543p
WKB series (WKB approximation; WKB expansion), leading order of      see “Physical optics approximation”
WKB series (WKB approximation; WKB expansion), transport equation      487
WKB theory      484—543
WKB theory as singular perturbation theory      493
WKB theory for internal boundary layers      463 482p
WKB theory in complex plane      541p 542p
WKB theory, boundary-layer theory vs.      484—485 488—490 498 503—505
WKB theory, classically allowed and forbidden regions      525 528
WKB theory, contributions of Wentzel, Kramers, Brillouin, Rayleigh, and Jeffreys      486
WKB theory, criteria for use of      493—497 506—508 521 568p
WKB theory, dispersive and dissipative phenomena described by      484—486
WKB theory, eigenvalue condition      467 519—525 537—539 542—543p
WKB theory, exponential substitution      80 484—493
WKB theory, global breakdown and      485
WKB theory, higher-order      534—539 543p
WKB theory, introductory discussion      326—327 328f 417 484—485
WKB theory, multiple-scale analysis and      556 558—559
Wronskian for continuous functions      8—11 15 31p 32p
Wronskian for discrete functions      41—43 55p
Zeta function $\zeta$      304 309p 375 376 377t 379 380t 575
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте