Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | |
Âîðîéñêèé Ô.Ñ. — Èíôîðìàòèêà. Íîâûé ñèñòåìàòèçèðîâàííûé òîëêîâûé ñëîâàðü | 469 |
Bartle R.G. — The Elements of Real Analysis | 83 |
Ueno K. — Algebraic Geometry. From varieties to schemes (vol. 1) | 11 |
Rudin W. — Fourier Analysis on Groups | 247 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 81 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 50 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 91 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 2176 |
Shorack G.R. — Probability for statisticians | 95 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 425.B 426 |
Meyn S.P., Tweedie R.L. — Markov Chains and Stochastic Stability | 519 |
Ganesh A., O'Connell N., Wischik D. — Big Queues | 57 |
Olver P.J. — Equivalence, Invariants and Symmetry | 8, 14, 29 |
Seebach J.A., Steen L.A. — Counterexamples in Topology | 3 |
Davis H. — Absolute Beginner's Guide to Wi-Fi® Wireless Networking | |
Matsumura H. — Commutative ring theory | 55 |
Schenck H. — Computational algebraic geometry | 12 |
Cameron P.J. — Combinatorics : Topics, Techniques, Algorithms | 1, 37—38, 177 |
Lueneburg H. — Tools and fundamental constructions of combinatorial mathematics | 365 |
Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 72 |
Rudin W. — Real and Complex Analysis | 8 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 2176 |
MacLane S., Moerdijk L. — Sheaves in Geometry and Logic | 219 |
Rosch W. — Winn L. Rosch Hardware Bible, Sixth Edition | |
Steen S.W.P. — Mathematical Logic with Special Reference to the Natural Numbers | 199 |
Lefschetz S. — Algebraic topology | 8 |
Tulloch M. — Windows Server 2003 in a Nutshell | |
Dean J., Pessanha B.G., Langfeldt N. — LPI Linux Certification in a Nutshell | |
Lee J.M. — Introduction to Topological Manifolds | 4, 18 |
Barnsley M. — Fractals Everywhere | 14, 16 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 113 |
Reddy K. — Building MPLS-Based Broadband Access VPNs | |
Carolan J., Radeztsky S., Strong P. — Buliding N1 Grid Solutions Preparing, Architecting, and Implementing Service-Centric Data Centers | |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 321, 324 |
Hand L.N., Finch J.D. — Analytical Mechanics | 235 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 273, 453 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 516—517, 593—670 |
Mendelson B. — Introduction to Topology | 84 |
Resnick S.I. — Heavy-Tail Phenomena: Probabilistic and Statistical Modeling | 170, 324 |
Kaczynski T., Mischaikow K.M. — Computational Homology | 402 |
Milne J.S. — Etale Cohomology. (PMS-33), Vol. 33 | 47, 54 |
Lorenz E.N. — Essence of Chaos | 146—147 |
Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 1 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 24—25 |
Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 145 |
Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 3, 199, 222 |
Reid M., Szendroi B. — Geometry and Topology | 94, 107—141, 143 |
Thomas A.D. — Zeta-functions | 190 |
Searcid M. — Metric Spaces | 58—61 |
Strauss W.A. — Partial Differential Equations: An Introduction | 26 |
Reid M. — Undergraduate algebraic geometry | see “Zariski topology” |
Allouche J.-P., Shallit J. — Automatic Sequences: Theory, Applications, Generalizations | 5 |
Barr M., Wells C. — Toposes, Triples and Theories | 195 |
Goldblatt R. — Topoi | 420 |
Pickover C.A. — Mobius Strip: Dr. August Mobius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology | xvi, 61—84 |
Loeve M. — Probability Theory (part 1) | 66 |
Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 227—230, 231 |
Brown J.R. — Philosophy of Mathematics: An Introduction to a World of Proofs and Pictures | 129, 176, 197 |
Dugunji J. — Topology | 62 |
Raabe D. — Computational materials science | 27 |
Berberian S.K. — Fundamentals of Real Analysis | 131 |
Pugh C.C. — Real Mathematical Analysis | 60 |
Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 27 |
Gleick J. — Chaos. Making a new science | 45—46, 50, 52, 198, 253 |
Lander E.S., Waterman M.S. (eds.) — Calculating the Secrets of Life: Applications of the Mathematical Sciences to Molecular Biology | 155, 166—167, 168, 170—171, 203—204, 205, 207, 244, 247 |
Morris S.A. — Topology without tears | 2 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 920, 1158—1181 |
Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 48—49 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 10 |
Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 177 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 10 |
Tamme G. — Introduction to Etale Cohomology | 23 |
Geroch R. — Mathematical physics | 136 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 91 |
Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 23 |
Khuri A.I. — Advanced calculus with applications in statistics | 10 |
Waterhouse W.C. — Introduction to Affine Group Schemes | 156 |
Royden H.L. — Real Analysis | 142 |
Nasar S. — A Beautiful Mind | 46, 56, 64, 68, 69 |
Eschrig H. — The Fundamentals of Density Functional Theory | 106 |
Goutsias J., Vincent L., Bloomberg D.S. — Mathematical morphology and its applications to image signal processing | 141 |
Rudin W. — Functional analysis | 6 |
Sinha S.M. — Mathematical Programming: Theory and Methods | 16 |
Kurth R. — Dimensional analysis and group theory in astrophysics | 137 |
Waterhouse W.C. — Introduction to Affine Group Schemes, Vol. 66 | 156 |
Brickell F., Clark R.S. — Differentiable Manifolds | 3 |
Royden H.L. — Real Analysis | 142 |
Boas R.P. — A Primer of Real Functions | 115 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 21, 257 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 920, 1158—1181 |
Lang S. — Real Analysis | 17 |
Coxeter H.S.M. — Introduction to Geometry | 39, 230, 373—374, 379—395 |
Ito K. — Encyclopedic Dictionary of Mathematics | 425.B, 426 |
Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 6:4043—4047, 6:4045f, 6:4046f |
Tarakanov A.O., Skormin V.A., Sokolova S.P. — Immunocomputing. Principles and applications | 25 |
Taylor J.C. — An Introduction to Measure and Probability | 14 |
Carter J.S. — How Surfaces Intersect in Space: A Friendly Introduction to Topology | 4 |
Hale J.K., Kocak H. — Dynamics and Bifurcations | see “C” and “Whitney” |
National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 185—197, 188, 469, 472 |
Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 635 |
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 6 |
Rudin W. — Real and complex analysis | 8 |
Knutson D. — Algebraic Spaces | 29 |
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 1,3 |
Lawvere F.W., Schanuel S.H. — Conceptual Mathematics: A First Introduction to Categories | 67 |
Dieudonne J. — Foundation of Modern Analysis | 3.12 |
Page Ch.H. — The Algebra of Electronics | 17 |
Featherstone R. — Rigid Body Dynamics Algorithms | see connectivity |
Huishi Li — An Introduction to Commutative Algebra: From the Viewpoint of Normalization | 144 |
Duffie D. — Security Markets. Stochastic Models | 30 |
Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 12.1 |
Tanimoto S.L. — The elements of artificial intelligence. An introduction using LISP | 428 |
von Neumann John, Morgenstern Oscar — Theory of games and economic behavior | 154, 384 |
Gong S., Gong Y. — Concise Complex Analysis | 143 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 59 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 920, 1158—1181 |
Borceux F. — Handbook of Categorical Algebra 3 | II.355, 486 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 14 |
Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 10 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 521 |
Weir A.J. — Lebesgue Integration and Measure | 223—240 |
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 20 |
Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | 152 |
Strichartz R.S. — The way of analysis | 73, 90, 123 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 78 |
Unertl W.N. — Physical Structure | 142, 171, 175, 176 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 107—108, 159, 200, 205, 211, 214 |
Serra J. — Image Analysis and Mathematical Morphology | 63—66 (see also “Hit or Miss”) |
Kasner E., Newman J. — Mathematics and the Imagination | 266, 271—274, 276—297, 300, 359 |
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 30 |
Köthe G. — Topological vector spaces I | 1 |
Burkhardt H. — Theory of Functions of a Complex Variable | 328 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 2, 207 |
Adams C.C. — The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots | 6 |
Coxeter H.S.M. — Regular Polytopes | 6—11, 81, 154, 165—172 |
Kirillov A.A. — Elements of the Theory of Representations | 6 |
Eschenauer H., Olhoff N., Schnell W. — Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization | 303 |
Bollobás B. — Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability | 160 |
Rockmore D. — Stalking the Riemann Hypothesis | 48—49 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 40 |
Hu S.-T. — Elements of real analysis | 48, 107 |
Munkres J. — Topology | 76 |
Granas A., Dugundji J. — Fixed Point Theory | 221, 590 |
O'Donnell C.J. — Incidence Algebras | 10, 52, 194—196, 217, 229 |
von Neumann J. — Continuous Geometry | 228 |
Janich K. — Topology | 5 |
Hu S.-T. — Elements of general topology | 16 |
Tamura I. — Topology of lie groups, I and II | 35 |
Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 134-181, 145 |
Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 145 |
Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 743 |
Vanderbei R.J. — Linear Programming: Foundations and Extensions | 259 |
Borceux F. — Handbook of Categorical Algebra: Categories and Structures, Vol. 2 | 355 |
Borceux F. — Handbook of Categorical Algebra: Categories and Structures, Vol. 2 | 355 |
Nagata M. — Field Theory | 150, 159 |
Shafer G., Vovk V. — Probability and finance | 96 |
Olver P.J., Shakiban C. — Applied linear. algebra | 148, 151, 303 |
Kolb E.W., Turner M.S. — The Early Universe | Topological defects, 35—36, 45—46, 220, 233, 236, 402—403, 433 |
Simmons G.F. — Introduction to topology and modern analysis | 92 |
D'Inverno R. — Introducing Einstein's Relatvity | 56, 215, 232, 233, 246 |
Jerry Shurman — Geometry of the Quintic | 3 |
Mirsky L. — Transversal theory. An account of some aspects of combinatorial mathematics | 20 |
Weyl H. — Philosophy of mathematics and natural science | 74, 89—91 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 58, 353 |
Aczel A.D. — God's Equation: Einstein, Relativity, and the Expanding Universe | 97-99, 212-13, 218 |
Hatfield B. — Quantum field theory of point particles and strings | 538 |
Pears A.R. — Dimension theory of general spaces | 3 |
Anderson G.A., Granas A. — Fixed Point Theory | 221, 590 |
Manton N., Sutcliffe P. — Topological solitons | 47 |
Birknoff — Lattice Theory | 39 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 17 |
Cantu-Paz E. — Efficient and accurate parallel genetic algorithms | 49, 51, 59, 74—77, 100, 105 |
Dieudonne J. — Foundation of Modern Analysis | 3.12 |
Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics | 363 |
Sarfraz M. — Advances in geometric modeling | 153, 206, 246 |
Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 203, 212, 257, 268—269, 301—309, 322, 325 |
Walley P. — Statistical reasoning with imprecise probabilities | 609—10 |
Bell E.T. — The Development of Mathematics | 168, 253, 324, 326, 453—468, 499, 550, 592—594 |
Tomanek D., Enbody R.J. — Science and application of nanotubes | see "Morphology of nanotubes" |
Moh T.T. — Algebra | 149 |
Barut A.O., Raczka R. — Theory of Group Representations and Applications | 52 |
Friedlander F.G. — The Wave Equation on a Curved Space-Time | 262 |
Mitra S., Acharya T. — Data mining. Multimedia, soft computing, and bioinformatics | 340 |
Perrin D., Pin J.-E. — Infinite Words: Automata, Semigroups, Logic abd Games | 136 |
Thorpe M.F. (ed.), Duxbury P.M. (ed.) — Rigidity theory and applications | 197 |
Friedman H.L. — Ionic Solution Theory Based on Cluster Expansion Methods | 6, 45 |
Arbib M.A., Manes E.G. — Arrows structures and functors. The categorical imperative | 71 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 135 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 16 |
Astfalk G. — Applications on Advanced Architecture Computers | 41, 63, 113, 177 |
Browder A. — Mathematical Analysis: An Introduction | 123 |
Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 16 |
Cairns S.S. — Introductory topology | 52, 54 |
Barwise J. — The Situation in Logic | 255 |
Xu Y., Xu D., Liang J. — Computational Methods for Protein Structure Prediction & Modeling. Volume 1 | 18, 21, 167, 186, 201, 210, 231, 260, 359—360, 373—375, 377—383 |
Goffman C., Pedrick G. — First course in functional analysis | 206 |
Brickell F., Clark R.S. — Differentiable manifolds | 3 |
Struik D.J. — Lectures on Analytic and Projective Geometry | 108 |
Valentine F.A. — Convex Sets | 3, 198 |
Hermann R. — Differential geometry and the calculus of variations | 23 |
Kreyszig E. — Introductory functional analysis with applications | 19 |
Hu S.T. — Introduction to general topology | 16 |
Lefschetz S. — Introduction to topology | 29, 30, 32 |
Hu S.-T. — Introduction to contemporary mathematics | 169, 189, 193 |
Domb C.M., Green M. — Phase Transitions and Critical Phenomena: Series Expansion for Lattice Models, Vol. 3 | 11, 58, 68, 70, 88, 89, 99, 103, 108, 109, 110, 112, 116, 132, 133, 163, 167, 173, 383 |
Leuchs G., Beth T. (eds.) — Quantum Information Processing | 135 |
Selig J.M. — Introductory robotics | 17, 59 |
Thomas A.D. — Zeta functions, introduction to algebraic geometry | 190 |
David O.Tall — Advanced Mathematical Thinking | 107, 108 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 62 |
Weinberg S. — The Quantum Theory of Fields. Vol. 2 Modern Applications | 422—430, see also "Homotopy", "Cohomology" |
Aliprantis C. — Principles of real analysis | 57 |
Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 115 |
Gleason A. — Fundamentals of Abstract Analysis | 250, 252 |
Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 42 |
Kinsey L.C. — Topology of surfaces | 37 |
Beth E.W. — The foundations of mathematics: A study in the philosophy of science | 161ff., 435, 521ff., 651f., 680 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 11 |
Knus M.-A. — Quadratic and hermitian forms over rings | 116 |
Ashby W.R. — An introduction to cybernetics | 85, 113 |
Weeks J.R. — The shape of space | 26—31 |
Coxeter H. — Regular polytopes | 6—11, 81, 154, 165—172 |
Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 74, 233, 234, 235, 266, 325 |
Dembo A., Zeitouni O. — Large deviations techniques and applications | 307 |
Synge J.L. — Relativity: The general theory | 260ff |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 297 |
Munkres J.R. — Topology: A First Course | 76 |
Johnstone P.T. — Topos Theory | 76 |
Wheeler J.A. — Topics of modern physics. Vol. I. Geometrodynamics | xiv |
Rucker R. — Mind Tools. The Five Levels of Mathematical Reality | 32, 160 |
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 342 |
Amoroso R.L. (ed.), Hunter G. (ed.), Vigier J.-P. (ed.) — Gravitation and Cosmology: From the Hubble Radius to the Planck Scale | 88, 197, 199 |
McShane E.J., Botts T.A. — Real Analysis | 39 |
Lefschetz S. — Introduction to Topology | 29, 30, 32 |
Kuratowski K. — Introduction To Set Theory & Topology | 103 |
Loomis L.H. — An introduction to abstract harmonic analysis | 3 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 191 |
Vasil'ev V. A., Sossinski A. — Introduction to Topology | 1 |
Kasner E., Newman J. — Mathematics and the imagination | 266, 271—274, 276—297, 300, 359 |
Carroll R.W. — Mathematical physics | 311 |
Krantz S.G. — A mathematician's survival guide: Graduate school and early career development | 10 |
Katz V.J. — A History of Mathematics: An Introduction | 814—822 |
Shick P.L. — Topology: Point-set and geometric | 3, 51—52 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 55 |
Richards P.I. — Manual of Mathematical Physics | 261, 280 |
Bachman G. — Elements of Abstract Harmonic Analysis | 61 |
Silverman J. — The arithmetic of dynamical systems | 6 |
Misra J.C. — Biomathematics: Modelling and Simulation | 197, 208, 211, 219 |
Moh T.T. — Algebra | 149 |
Audichya A. — Mathematics: Marvels and milestones | 30, 33, 34, 35, 36, 37, 38, 40 |
Hsiung C.-C. — A first course in differential geometry | 3 |
Tamme G. — Introduction to Étale Cohomology | 23 |
Loomis L.H., Sternberg S. — Advanced calculus | 201 |
Frankel T. — The geometry of physics: an introduction | 12 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 273, 453 |
Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 19 |
Kelley J., Namioka I. — Linear Topological Spaces | 27, see also "Vector topology" |
Oertel H. — Prandtl's Essentials of Fluid Mechanics (Applied Mathematical Sciences) | 52 |
Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 3 |
Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 283 |
Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 27 |
Ticciati R. — Quantum field theory for mathematicians | 428—430 |
Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 18, 121, 209, 374 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 28, 155, 168 |
Zeidler E. — Oxford User's Guide to Mathematics | 418, 590, 638, 1192 |
Collatz L. — Functional analysis and numerical mathematics | 18 |
Di Battista G. — Graph Drawing: Algorithms for the Visualization of Graphs | 19, 23 |
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 235—271 |
Gullberg J. — Mathematics: from the birth of numbers | 377, 378 |
Ifrah G., Bellos D. — The Universal History of Numbers: From Prehistory to the Invention of the Computer | 598 |
Treves F. — Topological Vector Spaces, Distributions And Kernels | 8 |
Kraitchik M. — Mathematical Recreations | 209—213 |
Jablan S., Sazdanovic R. — LinKnot: knot theory by computer | 12 |
Geroch R. — Mathematical physics | 136 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 14 |
De Barra G — Measure theory and integration | 17 |
Stillwell J. — Mathematics and its history | 73, 116, 206—208, 212—215, 218, 232, 285, 287, 292—309, 311 |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 132 |
Eves H.W. — Mathematical circles revisited | 137, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 323 |
Steen S. — Mathematical Logic with Special Reference to the Natural Numbers | 199 |
Addison P.S. — Fractals and chaos | 11 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 66, 121 |
Bell E.T. — Mathematics: Queen and Servant of Science | 100, 133, 144, 149, 151, 251, 322, 352 |
Frankel T. — The geometry of physics: An introduction | 12 |
Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 34 |
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 36 |
Davies P. — The New Physics | 63, 75, 82, 84, 90, 93, 209, 211—212 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 7 |
Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 84 |
Schutz B. — Geometrical Methods in Mathematical Physics | 51
Topology and charge |
Synge J. L. — Tensor Calculus | 116, 124, 179 |
Higgins P. — Mathematics for the curious | 63, 134 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 11 |
Mezey P.G. — Shape In Chemistry: An Introduction To Molecular Shape And Topology | 49, 55 |
Geroch R. — Mathematical physics | 136 |
Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 34 |
Keith Devlin — Mathematics: The New Golden Age | 145—155, 229—260 |
Kline M. — Mathematical thought from ancient to modern times | 920, 1158—1181 |
Klein E. — Mathematical methods in theoretical economics | 59 |
Nash C., Sen S. — Topology and geometry for physicists | 9, 12—16, 24 |
Ruelle D. — The mathematician's brain: A personal tour through the essentials of mathematics | 24, 27, 42, 146n6 |
Steen S. — Mathematical Logic | 199 |
Truss J.K. — Foundations of Mathematical Analysis | 101, 106, 121, 143 |
Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 3, 301 |
Serra J. — Image Analysis and Mathematical Morphology | see also "Hit or Miss", 63—66 |
Truss J. — Foundations of mathematical analysis | 101, 106, 121, 143 |
De Witt L. Sumners — New Scientific Applications of Geometry and Topology (Proceedings of Symposia in Applied Mathematics, V. 45) | 41, 131 |
J. K. Truss — Foundations of mathematical analysis MCet | 101, 106, 121, 143 |
Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 77, 79, 144 |