| 
			         | 
		         
		       
		        
			          | 
		          
		        
					| Àâòîðèçàöèÿ | 
		         
		        
					| 
 | 
		          
		        
			          | 
		          
		        
			        | Ïîèñê ïî óêàçàòåëÿì | 
		         
		        
			        
					 
				        
					
			         | 
		          
		        
			          | 
		          
			
			         | 
		         
       		 
			          | 
		          
                
                    | 
                        
                     | 
                  
		
			          | 
		          
		        
			          | 
		          
		
             
	     | 
	    
	      | 
	    
	    
            
		 |  
                
                    | Edwards H. — Advanced Calculus: A Differential Forms Approach | 
                  
                
                    | 
                        
                     | 
                 
                                                                
			          | 
	          
                
                    | Ïðåäìåòíûé óêàçàòåëü | 
                  
                
                    
                        Abel summation      412 426  
Abel's theorem      411—412  
Absolute convergence      409 439n  
Addition formulas for        253 (Ex. 2(b))  
Addition formulas for general exponentials      256 (Ex. 10)  
Addition formulas for trigonometric functions      252 (Ex. 1(e))  
Affine manifolds      129  
Affine maps      8 86—87  
Affine maps decomposed as a decomposition of simple maps      10—11 15 104—105 199 200  
Algebra of forms, the      90n  
Algebraic functions      381—383  
Almost everywhere convergence      435  
Alternating Series Test      377 (Ex. 9)  
Analytic functions      299  
Approximating sums      25—26 29 197—198 208—213 400 426  
Archimedean laws      366 373 377  
arcsine function      140 (Ex. 8) 386  
arctan      146—147  
Arithmetic mean      184 (Ex. 6)  
Arithmetic modulo n      376 (Ex. 3—5)  
Arzela's theorem      447 (Ex. 11)  
Atlas      203  
Banach spaces      448  
Basis of a vector space      115—117  
Betti numbers      327 (Ex. 10)  
Binomial coefficients      90n 304 424—425  
Binomial series      304—306  
Bolzano — Weierstrass theorem      393  
Boundary of a surface-with-boundary      215 223  
Boundedness of domains      31  
Boundedness of functions      31  
Cancellation on interior boundaries as the underlying idea of the Fundamental Theorem      59 65—66 72  
Canonical form for linear maps      119  
Cauchy convergence criterion      456—457  
Cauchy Convergence Criterion for complex numbers      292 310  
Cauchy Convergence Criterion in definition of fc-dimensional volume      197  
Cauchy Convergence Criterion in definition of integrals      30  
Cauchy Convergence Criterion in definition of real numbers      368  
Cauchy Convergence Criterion in successive approximations      230  
Cauchy — Riemann equations      283 296  
Cauchy's integral formula      298  
Cauchy's polygon      254 (Ex. 5)  
Cauchy's theorem      296  
Cesaro summation      426 (Ex. 14)  
Chain rule      143  
Chain rule for complex functions      311 (Ex. 10)  
Chain rule in Jacobian notation      102  
Chain rule in matrix notation      101—102  
Chain rule in proof of Stokes' Theorem      62 69—70 74  
Chain rule in terms of Jacobians      144  
Chain rule, principal statement      143  
Chain rule, proof      153—156  
Chain rule, proof for affine maps      87—90  
Chain rule, reviewed      190  
Chain rule, statement for affine maps      87  
Closed forms      63 (Ex. 8) 71—72 274 320—326  
Compactness, definition      392  
Compactness, related theorems      393—398  
Completeness of Banach spaces      448  
Completeness of Lebesgue integrable functions      442  
Completeness of real number system      373—375  
complex numbers      289—291  
Computational rules, governing forms and pullbacks      11—13 20 42—43 86 88—89 142—143  
Computational rules, governing the computation of derived forms      60 68 73 220  
Conditional convergence      410n  
Conductivity      334  
Conformal coordinates      283—286  
Confusion      26  
Conjugate of a complex number      309  
Conservative force fields      64 (Ex. 9)  
Constraints, examples      164—168  
Constraints, non-singular      168  
Constructive mathematics      463—466  
Content      197n  
Continued fractions      377—379 (Ex. 12—15)  
Continuity equation      332  
Continuity of a force field      24  
Continuity of a function of two variables      31  
Continuity of complex functions      293  
Continuity of k-forms      143  
Continuity of maps between Banach spaces      451  
Continuity, main definition      390  
Convergence      (see Cauchy Convergence Criterion)  
Coulomb's law      335  
Cramer's rule      109  
Critical points      170  
Cross products of vectors      266 (Ex. 5—7)  
Curl      267  
CURVES      (see also Manifolds)  
Curves, defined by equations      39  
Curves, defined by parameters      39  
d'Alembertian      347  
Decimal approximation      27 (Ex. 2) 380  
Decimal fractions      366—367 380  
Determinants, definition      101  
Determinants, method of evaluation      103—104 (Ex. 2)  
Determinants, reason for name      101n  
dielectric constant      241  
Differentiability of complex functions      293  
Differentiability of k-forms      73  
Differentiability of maps      143  
Differentiability of maps between Banach spaces      451  
Differentiability, main definition      390  
Differentiability, reviewed      190  
Differentiable manifolds      192  
Differential equations, describing families of curves      277 (Ex. 2)  
Differential equations, elementary techniques of solution      270—276  
Differential equations, fundamental existence theorem      245—251 320  
Differential equations, generalized existence theorem      315  
Differential equations, stated in terms of differentials      272 313—314  
Differential forms      73 (see also Forms)  
Differentiation under the integral sign      392 (Ex. 16) 399  
Directional derivatives      149 (Ex. 7)  
Dirichlet problem      288  
Div (divergence)      268  
Divergence of a flow      61  
Divergence theorem      73 268  
Dot product      172 269  
Double series      407—409  
Electrical forces      (see Coulomb's Law)  
electromagnetic field      343  
Elementary functions      384  
Elimination of variables in linear equations      76—79  
Elimination Theorem statement      158  
Elimination Theorem statement for rational numbers      365  
Elimination Theorem statement in proof of Implicit Function Theorem      158  
Elimination Theorem statement, proof      226—232  
Elimination Theorem statement, reviewed      191  
Envelopes      194 (Ex. 7)  
Equality of mixed partials      63 (Ex. 6) 74—75 218  
Euclidean algorithm      376 (Ex. 6)  
Euler      402—404  
Evaluation of      2-forms 12—13  
exact differential equations      274  
Exact forms      63 (Ex. 8) 71—72 273 320—326  
Exact sequences of affine maps      131 (Ex. 4)  
Exponential function      253 (Ex. 2) 311  
Exponentials of matrices      253 (Ex. 4) 254  
Exterior derivatives      73  
Exterior powers of matrices      (see Matrices)  
Factorial function      421—425 (Ex. 10 11)  
Faraday's Law of Induction      71 (Ex. 5) 342  
Flows, constant planar flows      2—4  
Flows, constant spatial flows      5—7  
Flows, general discussion      328—333  
Flows, planar flow from unit source      23 (Ex. 2)  
Flows, relation between direction of flow and corresponding (n—1) form      21 (Ex. 5 6)  
Flows, spatial flow from unit source      24 (Ex. 3) 288  
Folium of Descartes      141 (Ex. 9) 193  
force      (see Work)  
 | Forms, basic definitions      88  
Forms, non-constant forms      142  
Forms, on Banach spaces      452 454—455  
Fredholm alternative      126 (Ex. 12)  
Functions      (see Algebraic functions Elementary Maps Transcendental Polynomials)  
Fundamental theorem of algebra      306—307 312  
Fundamental Theorem of Calculus, as the case   of Stokes' Theorem      73  
Fundamental Theorem of Calculus, in vector notation      268  
Fundamental Theorem of Calculus, proof      53—55  
Fundamental Theorem of Calculus, related to independence of parameter      58 (Ex. 13)  
Fundamental Theorem of Calculus, related to Poincare's Lemma      327 (Ex. 9)  
Fundamental Theorem of Calculus, reviewed      391 (Ex. 4)  
Fundamental Theorem of Calculus, statement      52  
Fundamental Theorem of Calculus, uses      52—53  
Gamma function      423 (Ex. 10(n))  
Gauss and the lattice point problem      35 (Ex. 2)  
Gauss — Seidel iteration      240 (Ex. 2 3) 241 242  
Gauss' theorem      (see Divergence Theorem)  
Geometric mean      184 (Ex. 6)  
Goldbach conjecture      464—465  
Golden section      379n  
Grad (gradient)      267  
Gravity      (see Newton's Law of Gravity)  
Green's theorem in the plane      73  
Harmonic functions, analyticity of      308  
Harmonic functions, as solutions of Laplace's equation      278  
Harmonic functions, definition      278  
heat capacity      334  
Heat equation      333  
Heine — Borel theorem      205 393  
Holder inequality      174—175  
Homology, homology basis      323—324  
Homology, homology theory      320  
Homology, simple cases      75 (Ex. 5—6)  
Hyperbolic functions      253 (Ex. 3)  
Image of a map      81  
Implicit differentiation, description of the method      144—145  
Implicit differentiation, examples      145—147 150—151  
Implicit differentiation, proof      156—157  
Implicit Function Theorem, examples      134—139  
Implicit Function Theorem, for affine maps      105—108  
Implicit Function Theorem, for analytic functions      307—308  
Implicit Function Theorem, for differentiable maps      133—134  
Implicit Function Theorem, for maps between Banach spaces      451—452  
Implicit Function Theorem, proof      232—234  
Implicit Function Theorem, proof reduced to Elimination Theorem      157—159  
Implicit Function Theorem, reviewed      191  
Improper integrals      401  
Independence of parameter, for surface integrals      47  
Independence of parameter, general case      222  
Independence of parameter, proof      208—213  
Independence of parameter, statement      207  
Integers      366  
Integrability conditions      315  
Integrals      (see also Improper integrals Lebesque  
Integrals, as area under a curve      56 (Ex. 4) 65  
Integrals, as functions of S      224—225  
Integrals, basic properties      49—51  
Integrals, defined as a limit of sums      30—31  
Integrals, definition reviewed      400  
Integrals, difficulty of defining surface integrals      44—48  
Integrals, double integrals as iterated integrals      51  
Integrals, general properties      219—223  
Integrals, intuitive description of meaning      24—27  
Integrals, main theorem      204—213  
Integrals, of complex 1-forms      294—295  
Integrating factors      275  
Integration by parts      222  
Intermediate Value Theorem      159n  
Inverse function theorem      454 (Ex. 14 15)  
Inverse matrix, formula for      111—112  
Isoperimetric inequality      188—190 (Ex. 19)  
Iteration      240 (Ex. 1)  
Jacobians      100  
Lagrange multipliers      161  
Lagrange multipliers, examples      166—169 170—190  
Lagrange multipliers, restatement using differentiable manifolds      192—193  
Lagrange multipliers, statement of method      169  
Laplace's equation      278 288  
Laplacian      334  
Lebesgue dominated convergence theorem      437—438  
Lebesgue integration, completeness of space of Lebesgue integrable functions      442—446  
Lebesgue integration, examples and motivation      426—431  
Lebesgue integration, main theorem      436  
Lebesgue integration, passing to a limit under the integral sign      437—441  
Lebesgue integration, proof      431—435  
Leibniz notation      458—460  
Leibniz's formula      419 (Ex. 1)  
Level surfaces      80n  
Lexicographic order for k-forms      90—91  
Light as an electromagnetic phenomenon      348  
Line integrals      265—266  
Linear maps      117—122 123  
Lines of force      71 (Ex. 6)  
Liouville's theorem      311 (Ex. 9)  
Logarithm function      386 (Ex. 2)  
Lorentz transformations      350  
Magnetic forces      341  
Magnetic permeability      345  
Manifolds, affine      129  
Manifolds, compact, oriented, differentiable manifolds-with-boundary      219  
Manifolds, compact, oriented, differentiable surfaces      203  
Manifolds, compact, oriented, differentiable surfaces-with-boundary      214  
Manifolds, differentiable      192  
Manifolds, solving differential equations      314  
Manifolds, usefulness of term      129n  
Mappings      (see Maps)  
Maps, affine maps      8  
Maps, differentiable maps      143  
Maps, linear maps      117—122 123  
Maps, origin of term      8  
Mass and energy      351—354  
Matrices, exterior powers      97—100  
Matrices, formula for inverse      111—112  
Matrices, minors of      101  
Matrices, of coefficients of an affine map      94  
Matrices, products      95—97  
Matrices, transposes      98  
Maxima and minima      160—183  
Maxwell's equations of electrodynamics      340—348  
Mesh size (of a subdivision)      30  
Microscope, describing meaning of differentiability      151—153  
Microscope, in proof of independence of parameter      211—212  
Microscope, in rate of convergence of successive approximations      234 (Ex. 2)  
Microscope, related to integrals      222  
Minkowski's inequality      185 (Ex. 9) 448  
MODULO      (see Arithmetic modulo n)  
Modulus of a complex number      291  
Natural numbers      357—359  
Natural numbers, decimal notation      358  
Newton on “action at a distance”      340n  
Newton's Law of Gravity      23 (Ex. 1) 335  
Newton's method, error estimates      243—244  
Newton's method, in computation of nih roots      262—263  
Newton's method, statement      242—243  
Newton's theorems on the gravitational field of a spherical shell      336—337  
Norms on vector spaces      447—448  
One-to-one      81n  
Onto as an adjective      79n  
Orientations of a surface by a non-zero      2-form 45  
Orientations of integrals      29 29n  
Orientations of integrals over manifolds      221—222  
Orientations of n-space      131 (Ex. 3)  
Orientations of planar flows      3  
Orientations of space (right- or left-handed)      17  
Orientations of spatial flows      5  
Orientations of the boundary of an oriented manifold-with-boundary      219—220  
Orientations of the boundary of an oriented solid      66—67  
Oriented area      6 20  
Oriented area, formula for      14 (Ex. 5)  
 |   
                            
                     | 
                  
			  | 
		          
			| Ðåêëàìà |  
			  | 
		          
			 |  
                             
         |