√лавна€    Ex Libris     ниги    ∆урналы    —татьи    —ерии     аталог    Wanted    «агрузка    ’удЋит    —правка    ѕоиск по индексам    ѕоиск    ‘орум   
blank
јвторизаци€

       
blank
ѕоиск по указател€м

blank
blank
blank
 расота
blank
Lorenz E.N. Ч Essence of Chaos
Lorenz E.N. Ч Essence of Chaos

„итать книгу
бесплатно

—качать книгу с нашего сайта нельз€

ќбсудите книгу на научном форуме



Ќашли опечатку?
¬ыделите ее мышкой и нажмите Ctrl+Enter


Ќазвание: Essence of Chaos

јвтор: Lorenz E.N.

јннотаци€:

Chaos Surrounds us. Seemingly random events - the flapping of a flag, a storm-driven wave striking the shore, a pinball's path - often appear to have no order, no rational pattern. Explicating the theory of chaos and the consequences of its principal findings - that actual, precise rules may govern such apparently random behavior - has been a major part of the work of Edward N. Lorenz. In The Essence of Chaos, Lorenz presents to the general reader the features of this "new science," with its far-reaching implications for much of modern life, from weather prediction to philosophy, and he describes its considerable impact on emerging scientific fields. Unlike the phenomena dealt with in relativity theory and quantum mechanics, systems that are now described as "chaotic" can be observed without telescopes or microscopes. They range from the simplest happenings, such as the falling of a leaf, to the most complex processes, like the fluctuations of climate. Each process that qualifies, however, has certain quantifiable characteristics: how it unfolds depends very sensitively upon its present state, so that, even though it is not random, it seems to be. Lorenz uses examples from everyday life, and simple calculations, to show how the essential nature of chaotic systems can be understood. In order to expedite this task, he has constructed a mathematical model of a board sliding down a ski slope as his primary illustrative example. With this model as his base, he explains various chaotic phenomena, including some associated concepts such as strange attractors and bifurcations. As a meteorologist, Lorenz initially became interested in the field of chaos because of its implications for weather forecasting. In a chapter ranging through the history of weather prediction and meteorology to a brief picture of our current understanding of climate, he introduces many of the researchers who conceived the experiments and theories, and he describes his own initial encounter with


язык: en

–убрика: ‘изика/

—татус предметного указател€: √отов указатель с номерами страниц

ed2k: ed2k stats

√од издани€: 1996

 оличество страниц: 240

ƒобавлена в каталог: 14.05.2008

ќперации: ѕоложить на полку | —копировать ссылку дл€ форума | —копировать ID
blank
ѕредметный указатель
Adams, John Couch (1819-1892)      113
Almost-periodicity: absence of, and chaos      19Ч20 142
Almost-periodicity: in Hamiltonian systems      65 67 67
Almost-periodicity: meaning of      18Ч19
Analogues      85Ч86
Arrhythmias      15Ч16 127 149
Asymptotic solutions      118 199
Atmosphere as dynamical system      78 79.
Attracting sets: determination of points on      59Ч60 60.
Attracting sets: meaning of      59
Attractors: absence of, in Hamiltonian systems      61Ч62
Attractors: determination of points on      43Ч45 44 53
Attractors: graphical representation of      41Ч43
Attractors: in dishpan experiments      89Ч91
Attractors: meaning of      39Ч41
Attractors: multiple      55
Attractors: of board model      53Ч55 54 197Ч198 198
Attractors: of global weather system      50 97 98 99Ч100 130
Attractors: of sled model      45Ч48 46 47 49 197 198
Attractors: of specially designed systems      153 155 155Ч156 156 157 186 187
Bamsley, Michael Fielding      173
Baseballs      111Ч112
Basin boundaries: in board model      55Ч59 56
Basin boundaries: meaning of      55
Basins of attraction: in board model      55Ч59 74
Basins of attraction: meaning of      55
Bernoulli shifts      204
Bifurcations: in board model      70Ч76 72 73 75 76 147
Bifurcations: in dishpan experiments      89 147
Bifurcations: in logistic equation      194
Bifurcations: meaning of      69
Bifurcations: period-doubling      71 72 73 74Ч76 76
Bifurcations: resulting from stability changes      69Ч70
Bifurcations: saddlenode      70
Birkhoff's "bad" curves      121Ч124 122 123
Birkhoff, George David (1884-1944)      121 122 123 124 125 127 128 142
Bjerknes, Vilhelm Friman Koren (1862-1950)      95
Board model: attractor of      54 177 197Ч198 198
Board model: basin boundaries in      55Ч59 56
Board model: bifurcations in      70Ч76 72 73 75 76
Board model: detection of chaos in      32 33 34 35Ч37 36
Board model: determination of attractor of      53Ч54
Board model: formulation of      26Ч32
Bradbury, Ray      15
Brahms, Johannes (1833-1897)      150
Business cycles      149 151
Butterfly attractor      14 15 139Ч141 140 141 145 146 150 177 188
Butterfly effect      14--15 181Ч184
Butterfues: as symbols of chaos      13Ч15
Butterfues: as weather modifiers      85 153 181Ч183
Cantor sets      50 53 176Ч177 178 194 204
Cantor, Georg (1845-1918)      50
Capacity      168 196
Card shuffling      7 9
Cartwnght Ч Littlewood attractor      124 124Ч125 167
Cartwnght, Dame Mary Lucy      123
Cellular automata      174Ч175
Chaos: "make your own"      151Ч157 152 153 154 155 See
Chaos: acquisition of technical meaning      20Ч21 120
Chaos: and atmospheric predictability      102 103Ч106 142Ч143
Chaos: awareness of      113Ч114 120Ч121 125 128Ч129 146Ч147
Chaos: detection of      16 20 25Ч26
Chaos: in dishpan experiments      89 92
Chaos: in global circulation models      95 102
Chaos: in the atmosphere      79 86 94 108Ч109
Chaos: meanings of      3Ч4
Chaos: perceived as randomness      118Ч119 157Ч159
Chaos: recognition of, by Poincare      118Ч120
Chaos: refinements of technical meanings      5Ч6 7 8 23Ч24
Chaos: routes to and from      69Ч70
Chaos: symbols of      13Ч15
Chaos: technical meaning of, in this volume      4
Chaotic seas      64 66Ч68 68 147
Charney, Jule Gregory (1917-1981)      98 100 103 104 142
Chirikov, Bons      48 53 191
Climate, S.      50 79
Cloud physics      84. See also Clouds; Rain; Snow
Clouds      81Ч89 passim
Coefficient of function      28 39 189Ч190
coin tossing      6Ч7 9 12 14
Compactness: meaning of      16Ч17
Compactness: of board model      35 37
Compactness: of global weather system      82 85Ч86
Compactness: significance of      18Ч20
Complete randomness      7Ч8
complexity      4 163 164 165 166 166 167 170
Computation, manual      114 117 128
Computer graphics      43 185
Computers: and awareness of chaos      128Ч129.See also LGP-3O computer
Computers: and weather forecasting      82 95 98Ч106
Computers: as equation solvers      26 28 32 114 131 156 157 171
Conservative systems      61. See also Hamiltonian systems
Convection      137 143 145 148
Cross sections      43Ч56 passim. See also Double cross sections; Poincare sections
Cusps      56 57Ч58 59
Damping time      28 30
Day, length of      78 94
Determinism      7 8 9 157 159
Devaney, Robert      194
Dewey, Thomas Edmund (1902-1971)      77
Difference equations: as basis for dynamical systems      127. See also Logistic equation; Mappings; Population dynamics
Difference equations: derived from differential equations      13 47Ч48 121
Difference equations: meaning of      12
Differential equations: as basis for dynamical systems      121 142.
Differential equations: general solutions      111Ч112 117 139
Differential equations: in sled model      47
Differential equations: meaning of      13
Differential equations: solution curves      117Ч118
Dimensionality      168Ч177 passim 178 196Ч198
Discontinuous mappings      151Ч152
Dishpan experiments: apparatus for      87Ч89 88 90 92
Dishpan experiments: flow patterns in      89Ч92 90 91 93 94 95
Dishpan experiments: implications of      92Ч94
Disk dynamos      148
Dissipative systems: atmosphere and ocean as      78
Dissipative systems: meaning of      51
Dissipative systems: versus Hamiltonian systems      65 67
Double cross sections      56Ч57 58Ч59
Doubling times      104Ч106 182Ч183
Doubly asymptotic solutions      118 199
Duffing oscillator      167
Dynamic meteorology      82Ч87 passim 95 130
Dynamical systems: families of      28 See
Dynamical systems: meaning of      8
Economy      149
Ellipses: as attractors      42 61
Ellipses: as images of circles      50Ч53 52
Ellipses: as planetary orbits      112 114
Ellipsoids, as images of spheres      55 195Ч196
Energy      57 62Ч64 68 99
Equations: of dynamical systems      12Ч13
Equations: of global weather system      95Ч96 98.
Equilibrium      22Ч23. See also Stable equilibrium; Unstable equilibrium
Errors: in weather forecasting      104 105 106 182Ч184
Errors: in weather observations      85 96Ч104 136 182Ч183
European Centre for Medium Range Weather Forecasts      101Ч102
European Centre model      101Ч102 104Ч105
Faller, Alan Judson      92 145
Families of systems      28 62 69
Feigenbaum, Mitchell Jay      194
Filtered equations      99 100 104 132
Flags, flapping, as chaotic systems      5 16 17 20 24
Flows: mappings derived from      13 47Ч48 121.
Flows: meaning of      13
Fractal leaves      173 176 177
Fractal trees      171Ч173 172 174 175
Fractal triangles      169 170 170Ч171 173Ч174
Fractality      4 169Ч178 170 171 178. Fractal
Franklin, Philip (1898-1965)      142
Free will      158 159Ч160
Friction: in board model      27 28 57 74
Friction: in dissipative systems      51
Friction: in pendulums      5 61
Friction: in pinball machine      10 17
Friction: in real sliding systems      152. See also Coefficient of friction; Damping time
Fronts      92
Full chaos: in Birkhoff and Cartwright Ч Littlewood systems      122Ч125
Full chaos: meaning of      21Ч22
Full chaos: recognition of by Poincare      118Ч119
Full chaos: versus limited chaos      126Ч127
Fultz, Dave      87 89 92
Gleick, James      4 14 15 21 179
Global Atmospheric Research Program      80 103 110 142Ч143 181 184
Global circulation models      99Ч105 passim 109Ч110 142Ч143
Global weather system      80Ч82 85
Golfballs      16Ч17 112
Graphics      43 185
graphs      18 37Ч38 41
Gravity, force of: in atmosphere      86 93
Gravity, force of: in dishpan experiments      86 87
Gravity, force of: in ski-slope model      28
Gravity, force of: in solar system      111 113
Guckenheimer, John      49
Haken, Hermann      148
Hamilton, Sir William Rowan (1805-1863)      61
Hamiltonian board model: chaotic seas and islands in      64 65 65Ч68 67 68
Hamiltonian board model: detection of chaos in      63 64Ч65
Hamiltonian board model: formulation of      62Ч64
Hamiltonian systems: as atmospheric models      99
Hamiltonian systems: chaos and periodicity in      64Ч68 116
Hamiltonian systems: Lyapunov exponents of      195. See also Hamiltonian board model; Standard map; Volume-preserving systems
Hamiltonian systems: meaning of      61Ч62
Hausdorff dimension      168
Hausdorff, Felix (1868-1942)      168
Heartbeat      15Ч16 24 127 149
Hide, Raymond      89 90 91 92
High pressure systems      82 83 96Ч97
Hill's reduced problem      114Ч117 115 116 133 192Ч193
Hill, George William (1838-1914)      114 116
Homoclinicity      118 199Ч204
Horseshoe mappings      125Ч126 126 127 156 202Ч204
Howard, Louis Norberg      143
Humidity      80Ч81 101 105
Initialization      100 102
Instrumentation      84
Invariant sets      59 123Ч124
Invertible mappings      153
Izrailev, Felix      48 53
Jacobi integral      193
Japanese attractor      165 167
Jet streams      82 89 92Ч93 100 105
Jupiter      112
Kaplan Ч Yorke dimension      196
Kaplan, James      196
Keefe, Douglas      150
Knot theory      38 146 147
Kolmogorov, Andrei Nikolaevich (1903-1987)      168
Krakatau      106Ч107
Krishnamurti, Ruby      143
Kutta, Wilhelm (1867-1944)      185
Laboratory models      26 86Ч87 See
Laplace, Pierre Simon de (1749-1827)      159
Lasers      148
Leaves, falling, as chaotic systems      5 158
Length of day      78 94
LeVerrier, Urbain Jean Joseph (1811-1877)      113
LGP-3O computer      132Ч136 137
Li, lien Yien      20Ч21 120 145
Limited chaos: in Birkhoff and Cartwright-Littlewood systems      122Ч125
Limited chaos: in horseshoe mapping      125Ч126 204
Limited chaos: meaning of      21Ч22
Limited chaos: recognition of, by Poincare      118
Limited chaos: versus full chaos      126Ч127
Linear predichon      130Ч134
Linearity      161Ч162
Littlewood, John Edensor (1885-1977)      123
Lockett, Carolyn      150
Logistic equation      80 147Ч148 194Ч195
Lorenz attractor      See Butterfly attractor
Lorenz equahons      188 See
Lorenz, Edward Norton      14Ч15 69 128 130 136 150Ч151.
Low pressure systems      82 83 92 96Ч97 98
Lyapunov exponents      177 195Ч197
Lyapunov numbers      195 197
Lyapunov stability      142
Lyapunov, Aleksandr Mikhailovich (1857-1918)      142
Malkus, Willem van Rensselaer      143
Malone, Thomas Francis      130 137
Mandelbrot set      163Ч165 164 167 195
Mandelbrot, Benoit      169 170 173 177
Manifolds: as components of attractors      48 196
Manifolds: stable and unstable      99Ч202 200 201 203 203Ч204
Many-body problem      111
Mappings: as generators of chaos      151 153Ч157
Mappings: derived from flows      13 47Ч48 121
Mappings: discontinuous      151Ч153
Mappings: meaning of      12
Mappings: noninvertible      151 156 157 186 See
Markov, Andrei Andreevich (1856-1922)      142
Markov, Andrei Andreevich (son of A.A.M.)      142
Massachusetts Institute of Technology      130 137 142 143
Mathematical models, as approximations      5Ч6 10 17Ч18 27Ч28 35 45 87 95 112.
May, Robert McCredie      147 148
Menlees, Philip      15
Models      See Laboratory models; Mathematical models
Molecules      120
Monte Carlo forecasting      102Ч103 106
Moon      79
MUSIC      149Ч150
Nahonal Meteorological Center      102
Nemytskii, Viktor Vladimirovich      142
Neptune      111 113 114
Newton's Laws      26Ч27 82 111 148 149 189
Newton's method      187Ч188
Newton, Sir Isaac      111
Noninvertible flows      152Ч153
Noninvertible mappings      151 157 156 186
Nonlinearity      4 161Ч163
Numerical integration      96 112 185Ч188
Numerical weather prediction      95Ч106 passim 131
Orbits, in phase space      42 117
Orbits, planetary      111Ч116 passim 128
Oscillations, in atmosphere      96Ч102 passim. See also Quasi-biennial oscillation
Oscillators: Duffing      167
Oscillators: van der Pol      123
Parabolas      111Ч112
Parameterizahon      10
Pencils, standing, as unstable systems      22 119
Pendulums      4 5 39 42Ч43 51 61 162
Period doubling: in board model      71 72 73 74Ч76 76
Period doubling: in logistic equation      194
Period doubling: meaning of      71
Period doubling: prevalence of      71
Periodicity: absence of, and chaos      18Ч20 26 35Ч37 133 136 142
Periodicity: bifurcation to and from      71Ч74
Periodicity: hypothetical, in atmosphere      108Ч110 See
Periodicity: in atmosphere      86
Periodicity: in dishpan experiments      90Ч91
Periodicity: in Hamiltonian systems      67Ч68 115Ч116
Periodicity: introduced by Poincare      117
Periodicity: meaning of      18Ч19
Periodicity: of pendulum      42Ч43
Periodicity: of ski-slope model      43Ч44 46Ч47
Perturbation method      112Ч113
Phase space, meaning of      41Ч42
Phillips, Norman Alton      100 139
Pinball machines: as dynamical systems      9Ч10 13
Pinball machines: chaotic behavior in      10 11 12 18 19 20 62
Pinball machines: elongated      17Ч18 19 20
Platzman, George William      99
1 2
blank
–еклама
blank
blank
HR
@Mail.ru
       © Ёлектронна€ библиотека попечительского совета мехмата ћ√”, 2004-2017
Ёлектронна€ библиотека мехмата ћ√” | Valid HTML 4.01! | Valid CSS! ќ проекте