Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Lorenz E.N. — Essence of Chaos
Lorenz E.N. — Essence of Chaos



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Essence of Chaos

Автор: Lorenz E.N.

Аннотация:

Chaos Surrounds us. Seemingly random events - the flapping of a flag, a storm-driven wave striking the shore, a pinball's path - often appear to have no order, no rational pattern. Explicating the theory of chaos and the consequences of its principal findings - that actual, precise rules may govern such apparently random behavior - has been a major part of the work of Edward N. Lorenz. In The Essence of Chaos, Lorenz presents to the general reader the features of this "new science," with its far-reaching implications for much of modern life, from weather prediction to philosophy, and he describes its considerable impact on emerging scientific fields. Unlike the phenomena dealt with in relativity theory and quantum mechanics, systems that are now described as "chaotic" can be observed without telescopes or microscopes. They range from the simplest happenings, such as the falling of a leaf, to the most complex processes, like the fluctuations of climate. Each process that qualifies, however, has certain quantifiable characteristics: how it unfolds depends very sensitively upon its present state, so that, even though it is not random, it seems to be. Lorenz uses examples from everyday life, and simple calculations, to show how the essential nature of chaotic systems can be understood. In order to expedite this task, he has constructed a mathematical model of a board sliding down a ski slope as his primary illustrative example. With this model as his base, he explains various chaotic phenomena, including some associated concepts such as strange attractors and bifurcations. As a meteorologist, Lorenz initially became interested in the field of chaos because of its implications for weather forecasting. In a chapter ranging through the history of weather prediction and meteorology to a brief picture of our current understanding of climate, he introduces many of the researchers who conceived the experiments and theories, and he describes his own initial encounter with


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 240

Добавлена в каталог: 14.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Poincare mappings      48 53 55 196—197
Poincare sections      48 117—118 121
Poincare, Henri (1854-1912)      48 117 118 120 121 125 133 142 157 159 199 201
Points: in phase space      41 42 43
Population dynamics      50 147—148 149
posting      71
Prandtl number      137
Predeterminism      159
Predictability      10—12 77 102—108 181—184
Predictability experiments      102—104 142—143 182
Pressure      41 80—81 96—101
Prigogine, Ilya      3
Primitive equations      99 100 101 104
Prognostic charts      83 131
quantum mechanics      4 159
Quasi-biennial oscillation      106—108 107
Rain      78 81 84 87 109
Randomness: apparent, and chaos      4—5
Randomness: chaos perceived as      118—119 157—159
Randomness: technical meanings of      6—8
Reed, Richard John      106
Relativity      4
Richardson, Lewis Fry (1881-1953)      96 97
Robbins, Kay Ann      148
Rocks, rolling, as chaohc systems      4 8 159
Roessler's equations      148 189
Roessler, Otto      148
Rossby, Carl-Gustaf Arvid (1898-1957)      98
Round-off errors      136
Ruelle, David      48 136 167
Runge — Kutta methods      185—188 193
Runge, Carl David Tolme (1856-1927)      185
Saddle points      58
Saddle-node bifurcations      70 74
Saltzman, Barry      137
Saturn      112
Saxophones      149—150
Science Citation Index      144—145
Segel, Lee Aaron      145
Self-similarity      170—171
Sensitive dependence: and predictability      10—12
Sensitive dependence: meaning of      8—9
Sensitive dependence: recognition of, by Poincare      118—120
Shaw, Sir Napier (1854-1945)      87
Ski-slope model: formulation of      26—32 27 29 31 188—189 See
Sled model: attracting sets of      122—123 122 123
Sled model: attractor of      46 47 49 177 197 198
Sled model: detection of chaos in      39 40
Sled model: determination of attracting sets of      59—60 60
Sled model: determination of attractor of      43—47 44
Sled model: formulation of      38—39
Smale, Stephen      125 126 127 128 145 146 156 202
Snow      78 81 84
Soil moisture      101
Solenoid mapping      127—128 129 136
Sparrow, Colin      188
Stable equilibrium      22 55 69—70
Stable manifolds      See Manifolds
Standard map      191
Statistical self-similarity      171
Statistical weather forecasting      130—132
Stengers, Isabelle      4
Stepanov, Viacheslav VasileVlch (1889-1950)      142
Stewart, George Rippey (1895-1980)      15
Stewart, Ian      117
Strange attractors: acquisition of name      48—49 136
Strange attractors: as fractals      176 177—178 See
Strange attractors: meaning of      48—50
Strange attractors: pictures of      46 47 49 54 122 124 129 140 153 155 156 165 186 197 198
Strange attractors: prevalence of      51—53
Sun      79 112
Surfaces of section      48 117—118 121
Synoptic meteorology      82—84 130 149
Takens, Aoris      48 136
Temperature      41 78—82 88 101 102 105 136 162
Thompson, Philip Duncan      99
Three-body problem      112 114 117 120 121
Three-variable model      137—146 passim 138 147 148 188.
Thunderstorms      82—83 85 105—106 109 182
Tides, ocearuc      77—79
topology      146—147
TOPS      70 119
Tornados      14—15 82—83 181—182
Transient states      43 45 61 119
Travelers Research Center      130 137
Truman, Harry S.(1884-1972)      77
Turbulence      136 139 167 183
Twelve-variable model      128 132—136 135 137
Two-body problem      112—113
Ueda, Yoshisuke      167
Unstable equilibrium: in atmosphere      95—96 119
Unstable equilibrium: in board model      57
Unstable equilibrium: in three-variable model      138
Unstable equilibrium: meaning of      22—23
Unstable manifolds      See Manifolds
Uranus      113
Vacillation      90—92 93 108 133
van der Pol oscillator      123
Velocity      10 30 37
Visual arts      150
Volume-preserving systems      61 190—192.
von Neumann, John (1903-1957)      98 175
Vortices, atmospheric      82—98 passim 105
Water wheels      143—144 144 148
Waves, breaking, as chaotic systems      4 8 13 157 159
Weather forecasting      12 77 79 83 85 103 136 139
Weather forecasting, numerical      95—106 passim 131
Weather forecasting, statistical      130—132
Weather maps      83 92 95
Welander, Pierre      143
White, Robert Mayer      132
Wiener, Norbert (1894-1964)      4 131
Williams, Robert Fones      146
Wind      78—82 passim 95—102 158 See
Yorke, James Alan      20—21 120 145 196
Zero probability      21—22
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте