Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability
Àâòîð: Pesic P.
Àííîòàöèÿ: In 1824, a young Norwegian named Niels Henrik Abel proved conclusively that algebraic equations of the fifth order are not solvable in radicals. In this book, Peter Pesic shows what an important event this was in the history of thought. He also presents it as a remarkable human story. Abel was twenty-one when he self-published his proof, and he died five years later, poor and depressed, just before the proof started to receive wide acclaim. Abel's attempts to reach out to the mathematical elite of the day had been spurned, and he was unable to find a position that would allow him to work in peace and marry his fiancee. But Pesic's story begins long before Abel and continues to the present day, for Abel's proof changed how we think about mathematics and its relation to the "real" world. Starting with the Greeks, who invented the idea of mathematical proof, Pesic shows how mathematics found its sources in the real world (the shapes of things, the accounting needs of merchants) and then reached beyond those sources toward something more universal. The Pythagoreans' attempts to deal with irrational numbers foreshadowed the slow emergence of abstract mathematics. Pesic focuses on the contested development of algebra — which even Newton resisted — and the gradual acceptance of the usefulness and even beauty of abstractions that seem to invoke realities with dimensions outside human experience. Pesic tells this story as a history of ideas, with mathematical details incorporated in boxes. The book also includes a new annotated translation of Abel's original proof.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /Ïîïóëÿðíûå èçäàíèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2003
Êîëè÷åñòâî ñòðàíèö: 212
Äîáàâëåíà â êàòàëîã: 22.03.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
"Completing the cube," 36—37 120
"Completing the square," 25—26 113
"Golden ratio" 28
"July monarchy," 105—106
"Standard theory" (physics) 142 196n
"Treviso arithmetic" 29
Abbati Pietro 82
Abel, Niels Henrik 1-3 85—102 189n—190n
Abel, Niels Henrik, Abel-Ruffini Theorem 1—3 89—94 155—170 200n
Abel, Niels Henrik, Abelian Addition Theorem 151 200n
Abel, Niels Henrik, abelian equations 98—100
Abel, Niels Henrik, abelian groups 112—113
Abel, Niels Henrik, Abelian integrals 151 200n
Abel, Niels Henrik, and Cauchy 87 93—94 96
Abel, Niels Henrik, and Galois 105 108—109 130—131 145
Abel, Niels Henrik, and Gauss 88—89 95
Abel, Niels Henrik, and Hamilton 133
Abel, Niels Henrik, and Ruffini 87—89 97 190n
Abel, Niels Henrik, early life 85—89 189n
Abel, Niels Henrik, formulas of 88
Abel, Niels Henrik, illness and death of 101—102
Abel, Niels Henrik, notebooks of 97 152—153 200n
Abel, Niels Henrik, travels in Europe 95—97
Academie des Sciences 96 104—106
accounting See Bookkeeping
al-Khwarizmi, Muhammed ibn-Musa 25—26 30 183n—184n
Algebra coefficient 1 44—45 91—93
Algebra variable 1 44
Algebra, Arabic 23—28 45 54
Algebra, noncommutative 131—143
Algebra, roots 1 92 98
Algebra, symbolic notation 40—45 132
Algebra, unknown 43
Algebraic functions 90—91
Alogon 9
Alternating groups See Groups
Analytic mathematics 42 59
Anrta 9
Anticommutation 134—136 195n
Apollonius of Perga 42 51 59
Aporia 14 182n
Archimedes 32 60
Area problem 61—66
Aristotle 7 181n
Arithmos 9 181n
Athens 15
Ausdehnungslehre (Grassmann) 135—136
Ayoub, Raymond 189n 192n—193n
Babylonian mathematics 5 7 24—25 30 183n
Bacon, Francis 182n—183n
Basham, A.L. 181n
Beaumarchais, Pierre Augustin de 200n
Bell, Eric Temple 191n
Bernoulli Daniel 65
Bolyai, Janos 133 196n
Bombelli, Raphael 54—55 187n
Bookkeeping, double-entry 27—29 184n—185n
Boole, George 132—133 195n
Boole, George, Boolean algebra 132—133
Bourbaki, Nicolas (pseudonym) 188n 195n
Boyer, Carl 182n—195n
Bring, E.S. 67 188n
Brioschi, Fernando 146 98n
Brizio, Anna Maria 184n
Brown, R.G. 184n
Bryce, R.A. 189n
Buehler, W.K. 189n
Buergi, Jost 48—49
Bulletin (Baron de Ferussac) 96
Burkert, Walter 1981n
Burn, R.P. 193n
Burnside, William Snow 190n 192n—193n
Cajori, Florian 186n
Calculators 78 149—150
Calculus 60 62—63
Cantor, Georg 150 199n
Cardano, Girolamo 30—40 54 57 67 69 185n
Cartier, Pierre 197n
Cauchy, Augustin 83 87 96 104—105
Cauchy, Augustin, and commutativity 132 195n
Cauchy, Augustin, Cauchy's theorem 93 163 166 175—180 201n
Causality and noncommutativity 142 196n
Cayley, Arthur 112 126 136—138 195n
Cayley, Arthur, Cayley numbers 137
Cayley, Arthur, Cayley tables 112 119 122
Cervantes, Miguel de 23
Charles X 105
Chatfield, Michael 185n
Chinese mathematics 183n
Christiania See Oslo
Cipher 27—28 33 42
circle 62
Code See Cipher
Coleridge, Samuel Taylor 135
Commensurable 7—8 16
Commercial arithmetic 27—31
Commutativity 99 112
Computers 147 197n—198n
Conic sections 42
Connes, Alain 197n
Continuum 11 18
Cooke, Roger 200n
Cosa (coss) 27 44
Crelle, August 95-97
Crelle, August, Crelle's journal 95 101
Cross product See Multiplication
cube 5—6
Cube, symmetries of 121
Cyclic groups and symmetries 113 117 122 195n
Dance 111—130
Dauben, Joseph Warren 199n
De Moivre, Abraham 149 197n
Dedekind, Richard 183n 199n
Dehn, Edgar 192n
del Ferro, Scipione 32—34
del Ferro-Cardano-Tartaglia method 32—35 48—49 54—55 77 174
DeMorgan, Augustus 132 195n
Descartes, Rene 50—59 68 187n
Descartes, Rene, "relativity" of roots 57 140
Descartes, Rene, and conic sections 64
Descartes, Rene, Descartes's rule of signs 53
Descartes, Rene, La Geometric 50—58
Dickson, Leonard E. 192n
Dimension (algebraic) 50—51
Dirac, Paul 141
Disquisitiones Arithmetics (Gauss) 79 189n
dodecahedron 5—6
Dodecahedron, symmetries of 124—125 126—130
Doerrie, Heinrich 188n—190n
Don Quixote (Cervantes) 23
Dunham, William 185n 199n
Duplication of cube 196n
d’Alembert, Jean le Rond 68
e 28 150 184n 199n
Ecole Polytechnique 105
Ecole Preparatoire (Ecole Normale Superieure) 105
Edwards, Harold M. 191n
Einstein, Albert 140 143
Eisenstein, E.L. 184n
Elements See Euclid
Equations, algebraic, approximate solutions 66 147 198n
Equations, algebraic, cubic 3 28 30—37 90 113—120 148—149 185n
Equations, algebraic, general formulation 1—3
Equations, algebraic, quadratic 2 23 25—26 64 90—91 111—113 185n
Equations, algebraic, quartic 2 35 38—39 76—78 120—122
Equations, algebraic, quintic 2—3 77—78 91—99 122—129 198n
Equations, algebraic, roots 1
Erlangen Program (Felix Klein) 138—140 196n
Euclid 5 17—23 42 59 145—146 150 183n
Euclidian geometry 139
Eudoxus 17—18 183m
Euler, Leonhard 62 68 90 149 196n
Ewald, William B. 187n 195n 199n
Fauvel, John 184n—185n
Fearnly-Sander, Desmond 195n
Fermat's last theorem 87—88 189n—190n
Ferrari, Ludovico (Luigi) 34—35 37—39 57 69 76 122
fibonacci See Leonardo of Pisa
Field, J.V. 186n 199n
Fields (mathematics) 139
Fields (physics), quantum theory of 142—143
Fine structure constant 197n
Fine, Benjamin 188n
Fontana, Niccolo See Tartaglia
Fractions 7
France 45 96—97 102—108 190n
Fundamental theorem of algebra 56 68—73 79 146 188n
Galilei, Galileo 49—50 187n
Galois, Evariste 102—109 190n—191n
Galois, Evariste, and Abel 105—106 108—109 130—131 145
Galois, Evariste, and Cauchy 104—105
Galois, Evariste, and his father 104—105
Galois, Evariste, and Societe des Amis du Peuple 106—107
Galois, Evariste, and Stephanie Poterin-Dumotel 106
Galois, Evariste, death of 106—108
Galois, Evariste, education of 102—106 190n
Galois, Evariste, Galois theory 125—130 191n—193n
Galois, Evariste, legend of 108 191n
Galois, Evariste, posthumous writings of 108
Garding, Lars 190n
Gauge fields, nonabelian 142—143 196n
Gauss, Carl Friedrich 70—74 97 187n—189n
Gauss, Carl Friedrich, and Abel 89 95 100 151
Gauss, Carl Friedrich, and commutativity 131—132 195n
Gauss, Carl Friedrich, and unsolvability of quintic 79 88
Gazale, Midhat 183n
Gel’fond, A.O. 197n
Gentzen, Gerhard 197n
Geometrie, La (Descartes) 50—54 187n
Geometry 50 60 66
Germain, Sophie 104
Gibbs, Josiah Willard 136
Gibbs, W. Wayt 195n
Gies, J. and E. 184n
Girard's identities 61 92
Girard, Albert 51 56 68 187n
Gleason, Andrew 187n
God 49 55
Goedel, Kurt 197n
Goldstine, Herman H. 198n
Gonzalez de Posada, Francisco 198n
Gorman, Peter 181n
Grafton, Anthony 185n
Grassmann, Hermann 135—136 195n
Gray, Jeremy 184n—185n 197n
Great Art (Cardano) 30—40
Greek mathematics 5—21
Greene, Brian 196n
Gregory, Duncan 132 195n
Grossmann, Israel 193n
groups 109 111—130 138—140 193n—195n
Groups and permutations 175—180
Groups cosets 176
Groups identity 112 119 125
Groups order 176
Groups, 118—120
Groups, 121—122
Groups, 123—129 139
Groups, 112—113
Groups, 113—120 139
Groups, 120—122 139
Groups, 122—124
Groups, Abelian 112—113 129
Groups, continuous 140
Groups, cyclical 113 117 122 175—180 195n
Groups, definition of 125—126
Groups, invariant subgroups 119 129
Groups, Lagrange's Theorem 128 175—176
Groups, Lorentz 196n
Groups, monster group 130 195n
Groups, nonabelian 118 129 142—143
Groups, normal subgroups 119 129 193n—195n
Groups, philosophical aspects 193n
Groups, quotient 130 176—177 193n—194n
Groups, simple groups 130
Groups, solvable chains of 130 194n—195n
Groups, V 122
Groups, visualization of 193n
Guerard, Albert 190n
Hadlock, Charles Robert 192n
Hamilton, William Rowan 133—136 196n
Hankins, Thomas L. 196n
Harmony of the World (Kepler) 48 121 124 186n
Hartshorne, Robin 181n 191n 194n
Heath, Thomas 183n
Heisenberg uncertainty principle 141
Hellman, Morton J. 185n
Henry IV 45
Heptagon 48 186n—187n
Hermite, Charles 146 150 198n
Herrstein, I.N. 192n
Hexagon 48
Hilbert, David 197n
Hippias of Mesopontum 10
Hirano, Yoichi 193n
Hoe, J. 183n
Holder, Otto 130—131 177 194n
Holmboe, Berndt Michael 87 97 190n 200n
Holy Spirit 55
Huffman, C.A. 181n
Huntley, H.E. 181n
Hypergeometric functions 198n—199n
icosahedron 5—6
Icosahedron, symmetries of 123—129
incommensurability 7—14
Indian mathematics 9
Indistinguishability of quanta 142
infinity 22 146 148 151 153
Institut de France 100 106
Invariance 113 139
Invariant subgroups See Groups
Irrational magnitudes 7—14 19—21 145—146 183n
Irreducible case (cubic equations) 54
Irreversibility 141
Isograph 147
Jacobi, Carl Gustav Jacob 100 146
Jacobson, Nathan 192n
Jerrard, George B. 67 133 188n 195n
Johnston, K.S. 184n
Jordan, Camille 130—131 133 146 177 194n
Kabbalists 48
Kaku, Michio 196n
Kant, Immanuel 200n
Karl XIII 85
Kemp, Christine 96 101—102
Kepler, Johannes 48—49 121 124 186n—187n
Khayyam, Omar 30 184n
Kiernan, B. Melvin 193n
King, R. Bruce 192n
Klein, Felix 138—140 143 189n 191n 196n 199n
Klein, Jacob 182n 187n
Kline, Morris 182n 192n
Knorr, Wilbur Richard 182n
Kronecker, Leopold 146 190n 198n
La Geometrie (Descartes) 50—58
La Nave, Federica 187n
Lafayette, General 105
Lagrange, Joseph-Louis 73—83 87 188n
Lagrange, Joseph-Louis, Lagrange resolvent 74—79
Lagrange, Joseph-Louis, Lagrange's Theorem 128 175—176 194n
Ðåêëàìà