Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability
Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability

Автор: Pesic P.

Аннотация:

In 1824, a young Norwegian named Niels Henrik Abel proved conclusively that algebraic equations of the fifth order are not solvable in radicals. In this book, Peter Pesic shows what an important event this was in the history of thought. He also presents it as a remarkable human story. Abel was twenty-one when he self-published his proof, and he died five years later, poor and depressed, just before the proof started to receive wide acclaim. Abel's attempts to reach out to the mathematical elite of the day had been spurned, and he was unable to find a position that would allow him to work in peace and marry his fiancee. But Pesic's story begins long before Abel and continues to the present day, for Abel's proof changed how we think about mathematics and its relation to the "real" world. Starting with the Greeks, who invented the idea of mathematical proof, Pesic shows how mathematics found its sources in the real world (the shapes of things, the accounting needs of merchants) and then reached beyond those sources toward something more universal. The Pythagoreans' attempts to deal with irrational numbers foreshadowed the slow emergence of abstract mathematics. Pesic focuses on the contested development of algebra — which even Newton resisted — and the gradual acceptance of the usefulness and even beauty of abstractions that seem to invoke realities with dimensions outside human experience. Pesic tells this story as a history of ideas, with mathematical details incorporated in boxes. The book also includes a new annotated translation of Abel's original proof.


Язык: en

Рубрика: Математика/Популярные издания/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 212

Добавлена в каталог: 22.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lalanne, Leon      147
Laplace, Pierre Simon      51 80
Le Lionnais, Francois      199n
Le Manage de Figaro (Beaumarchais)      200n
Legendre, Adrien-Marie      96 100—101
Leibniz, Gottfried Wilhelm      55 65—67 183n 187n—188n
Lemniscate      65 200n
Leonardo da Vinci      6 28 184n
Leonardo of Pisa (Fibonacci)      27—28 30 184n
Lieber, Lillian R.      192n
Lindemann, Ferdinand      150 199n
Liouville, Joseph      133
Littlewood, D.E.      192n
Locus problem      57 59
Logos      9
Louis XVI      104
Louis XVIII      104—105
Louis-Philippe I      105—106
Lycee Louis-le-Grand      104
Macve, Richard      184n
Magnitudes      7—8 23
Magnus, Wilhelm      193n
Malfatti, Gianfrancesco      77 82
Maor, Eli      184n 197n 199n
Marinoni, Augusto      184n
Mathematica$^{TM}$      198n
Matrix      136—138
Maxfield, John E. and Margaret W.      191n—192n
Maxwell, James Clerk      135—136
Maxwellian dynamics      141
Mayer, Uwe E.      188n
Mazur, Barry      187n
Meno      13—14 182n
Mercantile Arithmetic (Widman)      29
Merzbach, Uta C.      182n—195n
Minkowski, Hermann      140
Mitchell, David      193n
Modular functions      198n
Monster      See Groups
Montuda, Jean Etienne      79 189n
Morduhai-Boltovsky, D.      197n
Multiplication matrix      136—138
Multiplication quaternion      134
Multiplication, commutativity of      131—132
Multiplication, Grassmann algebra      135—136
Multiplication, scalar product      135
Multiplication, vector product      135
MUSIC      7 19—20 48 183n
Mutafian, Claude      192n
Nahin, Paul J.      187n
Napoleon      104 108
Needham, Joseph      183n
Newton, Isaac      59—66 149—150 187n—188n
Newton, Isaac, and Descartes      59 66
Newton, Isaac, lemma      28 61—66 148
Newton, Isaac, Newton's identities      60—61
Newton, Isaac, Newton's method      66
Newtonian dynamics      136 141
Niven, Ivan      199n
Nonabelian gauge fields      142—143 196n
Nonabelian groups      See Groups
Noncommutative geometry      143 197n
Noncommutativity      99—100 131—143 195n
Normal subgroups      See Groups
Norway      85
Numbers in Greek mathematics      9
Numbers quaternions      134—135 196n
Numbers, algebraic      146 150 197n
Numbers, complex and imaginary      54—56 70 148—149 187n
Numbers, counting      9
Numbers, irrational magnitudes      7—8 18—19 23 146
Numbers, line      51
numbers, negative      51—54 187n
Numbers, octonions (Cayley numbers)      137
Numbers, place value      24
Numbers, rational      7—8 146
Numbers, sexagesimal      24—25
Numbers, transcendental      62 66 150 197n 199n
Numbers, ultraradical      146 150 197n
octahedron      5—6
Octahedron, symmetries of      121
Octonions      See numbers
Ore, Oystein      185n 189n
Oslo      87
Oval      61—66
Pacioli, Luca      6 28—30 184n—185n
Panton, Arthur William      190n 192n
Pappus      10—11 42 57 182n
parabola      65
Parshall, Karen Hunger      184n—185n
Pascal, Blaise      147
Peacock, George      132 195n
Pentagon      49
permutations      75—77 82 108—109 111—130 175—180
Pesic, Peter      142 182n—183n 186n 188n 196n—197n
Peterson, Mark      185n
Pi $(\pi)$      62 150 199n
Pierce, Benjamin      138 195n
Pierce, C.S.      138 195n
Piero della Francesca      28 30 185n
Pierpont, J.      190n
Planck, Max      141 196n
Plato      11—17 44 140—141 182n
Platonic solids      5—6 122 138 143 193n
Poisson, Simeon-Denis      101
Postnikov, M.M.      192n
Poterin-Dumotel, Stephanie      106
Pourciau, Bruce      188n
Principia (Newton)      59—66 187n
Pycior, Helena M.      186n—187n
Pythagoras      5—11 46 181n
Pythagorean Theorem      11
Pythagoreans      5—11 15
Quantum theory      141—143 196
Quaternions      See numbers
Radicals      2 35
Ralph, Leslie      181n
Rashed, Roshdi      184n
Raspail, Francois-Vincent      97 106 108 191n
Rational magnitudes      9
Ratios      7
Reductio ad absurdum      7—8 64 90
Relativity and Galois theory      140 196n—197n
Relativity of roots      57 140
Relativity of space-time      140
Relativity, general      143 196n
Relativity, special      140
Republic (Plato)      15 182n
Resolvent      see Lagrange resolvent
Richard, Louis-Paul-Emile      104—105
Roman law      43
Roots of unity      74 97
Rosen, Michael      190n 200n
Rosenberger, Gerhard      188n
Rothman, Tony      191n
Royal Frederick's University, Christiania (Oslo)      87
Rta      9 181n
Ruffini, Paolo      80—83
Sacrifice      10 46
Saigey, Jaques Frederic      96
Scalars      135
Second law of thermodynamics      141
Seventeen-sided polygon      70 74 189n
Shanker, S.G.      197n
Shurman, Jerry      192n
Shylock      27 184n
Singh, Simon      190n
Skau, Christian      190n
Smale, Steve      197n
Societe des Amis du Peuple      106—107
Socrates      13—17 182n
Solomon, Ron      195n
Solution in radicals      2
Space, four-dimensional      135 197n
Space, n-dimensional      135—136 138
Space, three-dimensional      139—141 143
Spearman, Blair K.      198n
Species, logic of      44 132
speed of light      140 142 196n
Square      7—14
Square roots, sound of      20
Squaring the circle      150 196n
Stahl, Saul      191n 195n
Stein, Howard      183n
Steiner, George      191n
Stewart, Ian      192n 197n
Stillwell, John      193n
Stubhaug, Arild      189n—191n 200n
Subgroups      See Groups
Suleiman H.      153
Summary of Arithmetic (Pacioli)      28—29
Swetz, Frank      185n
Sylvester, James Joseph      136—138 195n
Symmetric groups      See Groups
Symmetry      113
Symmetry in algebraic expressions      60
Symmetry of fundamental particles      142—143
Symmetry of polyhedra      see Triangle; Tetrahedron; Cube; Dodecahedron; Icosahedron; Octahedron
Symmetry of three-dimensional space      124
Synthetic mathematics      42—43
Tartaglia      32—34 185n
Taton, Rene      191n
Taylor, R. Emmett      184n
Tetractys      10
tetrahedron      5—6
Tetrahedron, symmetries of      120—121
Theaetetus      15—17 20 182n
Theodorus      17 182n
Theology, Christian      55
Thermodynamics      141
Theta functions      146 198n
Third Law of Planetary Motion (Kepler)      49
Tignol, Jean-Pierre      192n
Time, irreversibility of      141
topology      72
Torres Quevedo, Leonardo      147 198n
Torture      16—17 182n—183n
Toti Rigatelli, Laura      190n—192n
Transcendental      See Number
Trial      18
Triangle, symmetries of      113—120
Trigonometry      47 149—150 186n
Trisection of angle      187n 196n
Tschebotarow, N.      192n
Universal Arithmetic (Newton)      60
Uspensky J.V.      185n 188n
Van der Waerden, B.L.      183n—184n 188n 193n
van Roomen, Adriaan      45—47 186n
Vandermonde, Alexandre-Theophile      75 188n
Vectors      135
Vernier, Hippolyte Jean      104
Verriest, G.      192n
Vetter, Guido      186n
Viete, Francois      41—47 56—58 73 132 151 186n
Voltaire, Francois Marie Arouet de      85
von Fritz, Kurt      182n
von Tschirnhaus, Count Ehrenfried Walter      66—68 188n
von Tschirnhaus, Count Ehrenfried Walter, Tschirnhaus transformation      68
Walker, D.P.      186n
Wallis, John      186n
Weil, Simone      183n
West, M.L.      183n
Weyl, Hermann      140 193n 196n
Widman, Johann      29
Wiles, Andrew      189n
Williams, Kenneth S.      198n
Wilson, Curtis      193n
Winternitz, Emmanuel      184n
Wussing, Hans      188n—189n 193n
Xenophon      182n
Yaglom, I.M.      192n 195n—196n
Yamey, B.S.      184n
Zammattio, Carlo      184n
Zero      9 43
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте