Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability
Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability

Àâòîð: Pesic P.

Àííîòàöèÿ:

In 1824, a young Norwegian named Niels Henrik Abel proved conclusively that algebraic equations of the fifth order are not solvable in radicals. In this book, Peter Pesic shows what an important event this was in the history of thought. He also presents it as a remarkable human story. Abel was twenty-one when he self-published his proof, and he died five years later, poor and depressed, just before the proof started to receive wide acclaim. Abel's attempts to reach out to the mathematical elite of the day had been spurned, and he was unable to find a position that would allow him to work in peace and marry his fiancee. But Pesic's story begins long before Abel and continues to the present day, for Abel's proof changed how we think about mathematics and its relation to the "real" world. Starting with the Greeks, who invented the idea of mathematical proof, Pesic shows how mathematics found its sources in the real world (the shapes of things, the accounting needs of merchants) and then reached beyond those sources toward something more universal. The Pythagoreans' attempts to deal with irrational numbers foreshadowed the slow emergence of abstract mathematics. Pesic focuses on the contested development of algebra — which even Newton resisted — and the gradual acceptance of the usefulness and even beauty of abstractions that seem to invoke realities with dimensions outside human experience. Pesic tells this story as a history of ideas, with mathematical details incorporated in boxes. The book also includes a new annotated translation of Abel's original proof.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Ïîïóëÿðíûå èçäàíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 212

Äîáàâëåíà â êàòàëîã: 22.03.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"Completing the cube,"      36—37 120
"Completing the square,"      25—26 113
"Golden ratio"      28
"July monarchy,"      105—106
"Standard theory" (physics)      142 196n
"Treviso arithmetic"      29
Abbati Pietro      82
Abel, Niels Henrik      1-3 85—102 189n—190n
Abel, Niels Henrik, Abel-Ruffini Theorem      1—3 89—94 155—170 200n
Abel, Niels Henrik, Abelian Addition Theorem      151 200n
Abel, Niels Henrik, abelian equations      98—100
Abel, Niels Henrik, abelian groups      112—113
Abel, Niels Henrik, Abelian integrals      151 200n
Abel, Niels Henrik, and Cauchy      87 93—94 96
Abel, Niels Henrik, and Galois      105 108—109 130—131 145
Abel, Niels Henrik, and Gauss      88—89 95
Abel, Niels Henrik, and Hamilton      133
Abel, Niels Henrik, and Ruffini      87—89 97 190n
Abel, Niels Henrik, early life      85—89 189n
Abel, Niels Henrik, formulas of      88
Abel, Niels Henrik, illness and death of      101—102
Abel, Niels Henrik, notebooks of      97 152—153 200n
Abel, Niels Henrik, travels in Europe      95—97
Academie des Sciences      96 104—106
accounting      See Bookkeeping
al-Khwarizmi, Muhammed ibn-Musa      25—26 30 183n—184n
Algebra coefficient      1 44—45 91—93
Algebra variable      1 44
Algebra, Arabic      23—28 45 54
Algebra, noncommutative      131—143
Algebra, roots      1 92 98
Algebra, symbolic notation      40—45 132
Algebra, unknown      43
Algebraic functions      90—91
Alogon      9
Alternating groups      See Groups
Analytic mathematics      42 59
Anrta      9
Anticommutation      134—136 195n
Apollonius of Perga      42 51 59
Aporia      14 182n
Archimedes      32 60
Area problem      61—66
Aristotle      7 181n
Arithmos      9 181n
Athens      15
Ausdehnungslehre (Grassmann)      135—136
Ayoub, Raymond      189n 192n—193n
Babylonian mathematics      5 7 24—25 30 183n
Bacon, Francis      182n—183n
Basham, A.L.      181n
Beaumarchais, Pierre Augustin de      200n
Bell, Eric Temple      191n
Bernoulli Daniel      65
Bolyai, Janos      133 196n
Bombelli, Raphael      54—55 187n
Bookkeeping, double-entry      27—29 184n—185n
Boole, George      132—133 195n
Boole, George, Boolean algebra      132—133
Bourbaki, Nicolas (pseudonym)      188n 195n
Boyer, Carl      182n—195n
Bring, E.S.      67 188n
Brioschi, Fernando      146 98n
Brizio, Anna Maria      184n
Brown, R.G.      184n
Bryce, R.A.      189n
Buehler, W.K.      189n
Buergi, Jost      48—49
Bulletin (Baron de Ferussac)      96
Burkert, Walter      1981n
Burn, R.P.      193n
Burnside, William Snow      190n 192n—193n
Cajori, Florian      186n
Calculators      78 149—150
Calculus      60 62—63
Cantor, Georg      150 199n
Cardano, Girolamo      30—40 54 57 67 69 185n
Cartier, Pierre      197n
Cauchy, Augustin      83 87 96 104—105
Cauchy, Augustin, and commutativity      132 195n
Cauchy, Augustin, Cauchy's theorem      93 163 166 175—180 201n
Causality and noncommutativity      142 196n
Cayley, Arthur      112 126 136—138 195n
Cayley, Arthur, Cayley numbers      137
Cayley, Arthur, Cayley tables      112 119 122
Cervantes, Miguel de      23
Charles X      105
Chatfield, Michael      185n
Chinese mathematics      183n
Christiania      See Oslo
Cipher      27—28 33 42
circle      62
Code      See Cipher
Coleridge, Samuel Taylor      135
Commensurable      7—8 16
Commercial arithmetic      27—31
Commutativity      99 112
Computers      147 197n—198n
Conic sections      42
Connes, Alain      197n
Continuum      11 18
Cooke, Roger      200n
Cosa (coss)      27 44
Crelle, August      95-97
Crelle, August, Crelle's journal      95 101
Cross product      See Multiplication
cube      5—6
Cube, symmetries of      121
Cyclic groups and symmetries      113 117 122 195n
Dance      111—130
Dauben, Joseph Warren      199n
De Moivre, Abraham      149 197n
Dedekind, Richard      183n 199n
Dehn, Edgar      192n
del Ferro, Scipione      32—34
del Ferro-Cardano-Tartaglia method      32—35 48—49 54—55 77 174
DeMorgan, Augustus      132 195n
Descartes, Rene      50—59 68 187n
Descartes, Rene, "relativity" of roots      57 140
Descartes, Rene, and conic sections      64
Descartes, Rene, Descartes's rule of signs      53
Descartes, Rene, La Geometric      50—58
Dickson, Leonard E.      192n
Dimension (algebraic)      50—51
Dirac, Paul      141
Disquisitiones Arithmetics (Gauss)      79 189n
dodecahedron      5—6
Dodecahedron, symmetries of      124—125 126—130
Doerrie, Heinrich      188n—190n
Don Quixote (Cervantes)      23
Dunham, William      185n 199n
Duplication of cube      196n
d’Alembert, Jean le Rond      68
e      28 150 184n 199n
Ecole Polytechnique      105
Ecole Preparatoire (Ecole Normale Superieure)      105
Edwards, Harold M.      191n
Einstein, Albert      140 143
Eisenstein, E.L.      184n
Elements      See Euclid
Equations, algebraic, approximate solutions      66 147 198n
Equations, algebraic, cubic      3 28 30—37 90 113—120 148—149 185n
Equations, algebraic, general formulation      1—3
Equations, algebraic, quadratic      2 23 25—26 64 90—91 111—113 185n
Equations, algebraic, quartic      2 35 38—39 76—78 120—122
Equations, algebraic, quintic      2—3 77—78 91—99 122—129 198n
Equations, algebraic, roots      1
Erlangen Program (Felix Klein)      138—140 196n
Euclid      5 17—23 42 59 145—146 150 183n
Euclidian geometry      139
Eudoxus      17—18 183m
Euler, Leonhard      62 68 90 149 196n
Ewald, William B.      187n 195n 199n
Fauvel, John      184n—185n
Fearnly-Sander, Desmond      195n
Fermat's last theorem      87—88 189n—190n
Ferrari, Ludovico (Luigi)      34—35 37—39 57 69 76 122
fibonacci      See Leonardo of Pisa
Field, J.V.      186n 199n
Fields (mathematics)      139
Fields (physics), quantum theory of      142—143
Fine structure constant      197n
Fine, Benjamin      188n
Fontana, Niccolo      See Tartaglia
Fractions      7
France      45 96—97 102—108 190n
Fundamental theorem of algebra      56 68—73 79 146 188n
Galilei, Galileo      49—50 187n
Galois, Evariste      102—109 190n—191n
Galois, Evariste, and Abel      105—106 108—109 130—131 145
Galois, Evariste, and Cauchy      104—105
Galois, Evariste, and his father      104—105
Galois, Evariste, and Societe des Amis du Peuple      106—107
Galois, Evariste, and Stephanie Poterin-Dumotel      106
Galois, Evariste, death of      106—108
Galois, Evariste, education of      102—106 190n
Galois, Evariste, Galois theory      125—130 191n—193n
Galois, Evariste, legend of      108 191n
Galois, Evariste, posthumous writings of      108
Garding, Lars      190n
Gauge fields, nonabelian      142—143 196n
Gauss, Carl Friedrich      70—74 97 187n—189n
Gauss, Carl Friedrich, and Abel      89 95 100 151
Gauss, Carl Friedrich, and commutativity      131—132 195n
Gauss, Carl Friedrich, and unsolvability of quintic      79 88
Gazale, Midhat      183n
Gel’fond, A.O.      197n
Gentzen, Gerhard      197n
Geometrie, La (Descartes)      50—54 187n
Geometry      50 60 66
Germain, Sophie      104
Gibbs, Josiah Willard      136
Gibbs, W. Wayt      195n
Gies, J. and E.      184n
Girard's identities      61 92
Girard, Albert      51 56 68 187n
Gleason, Andrew      187n
God      49 55
Goedel, Kurt      197n
Goldstine, Herman H.      198n
Gonzalez de Posada, Francisco      198n
Gorman, Peter      181n
Grafton, Anthony      185n
Grassmann, Hermann      135—136 195n
Gray, Jeremy      184n—185n 197n
Great Art (Cardano)      30—40
Greek mathematics      5—21
Greene, Brian      196n
Gregory, Duncan      132 195n
Grossmann, Israel      193n
groups      109 111—130 138—140 193n—195n
Groups and permutations      175—180
Groups cosets      176
Groups identity      112 119 125
Groups order      176
Groups, $A_3$      118—120
Groups, $A_4$      121—122
Groups, $A_5$      123—129 139
Groups, $S_2$      112—113
Groups, $S_3$      113—120 139
Groups, $S_4$      120—122 139
Groups, $S_5$      122—124
Groups, Abelian      112—113 129
Groups, continuous      140
Groups, cyclical      113 117 122 175—180 195n
Groups, definition of      125—126
Groups, invariant subgroups      119 129
Groups, Lagrange's Theorem      128 175—176
Groups, Lorentz      196n
Groups, monster group      130 195n
Groups, nonabelian      118 129 142—143
Groups, normal subgroups      119 129 193n—195n
Groups, philosophical aspects      193n
Groups, quotient      130 176—177 193n—194n
Groups, simple groups      130
Groups, solvable chains of      130 194n—195n
Groups, V      122
Groups, visualization of      193n
Guerard, Albert      190n
Hadlock, Charles Robert      192n
Hamilton, William Rowan      133—136 196n
Hankins, Thomas L.      196n
Harmony of the World (Kepler)      48 121 124 186n
Hartshorne, Robin      181n 191n 194n
Heath, Thomas      183n
Heisenberg uncertainty principle      141
Hellman, Morton J.      185n
Henry IV      45
Heptagon      48 186n—187n
Hermite, Charles      146 150 198n
Herrstein, I.N.      192n
Hexagon      48
Hilbert, David      197n
Hippias of Mesopontum      10
Hirano, Yoichi      193n
Hoe, J.      183n
Holder, Otto      130—131 177 194n
Holmboe, Berndt Michael      87 97 190n 200n
Holy Spirit      55
Huffman, C.A.      181n
Huntley, H.E.      181n
Hypergeometric functions      198n—199n
icosahedron      5—6
Icosahedron, symmetries of      123—129
incommensurability      7—14
Indian mathematics      9
Indistinguishability of quanta      142
infinity      22 146 148 151 153
Institut de France      100 106
Invariance      113 139
Invariant subgroups      See Groups
Irrational magnitudes      7—14 19—21 145—146 183n
Irreducible case (cubic equations)      54
Irreversibility      141
Isograph      147
Jacobi, Carl Gustav Jacob      100 146
Jacobson, Nathan      192n
Jerrard, George B.      67 133 188n 195n
Johnston, K.S.      184n
Jordan, Camille      130—131 133 146 177 194n
Kabbalists      48
Kaku, Michio      196n
Kant, Immanuel      200n
Karl XIII      85
Kemp, Christine      96 101—102
Kepler, Johannes      48—49 121 124 186n—187n
Khayyam, Omar      30 184n
Kiernan, B. Melvin      193n
King, R. Bruce      192n
Klein, Felix      138—140 143 189n 191n 196n 199n
Klein, Jacob      182n 187n
Kline, Morris      182n 192n
Knorr, Wilbur Richard      182n
Kronecker, Leopold      146 190n 198n
La Geometrie (Descartes)      50—58
La Nave, Federica      187n
Lafayette, General      105
Lagrange, Joseph-Louis      73—83 87 188n
Lagrange, Joseph-Louis, Lagrange resolvent      74—79
Lagrange, Joseph-Louis, Lagrange's Theorem      128 175—176 194n
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå