Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Friedman H.L. — Ionic Solution Theory Based on Cluster Expansion Methods
Friedman H.L. — Ionic Solution Theory Based on Cluster Expansion Methods



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Ionic Solution Theory Based on Cluster Expansion Methods

Автор: Friedman H.L.

Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1962

Количество страниц: 265

Добавлена в каталог: 21.03.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Activity      82
Analytical continuation      137
Association of ions      220
At least doubly connected, ALDC      48
At least singly connected, ALSO      46
Bicycle graphs      185
Binary electrolyte      196
Binomial theorem      24
BOND      6 43 127
Cavendish experiment      133
Chain      45 50 127
Class of graphs      155
Classification of sets      22
Cluster expansion of configuration integral      8 41
Cluster expansion of correlation function      96 169
Cluster expansion of excess free energy      91 165
Cluster expansion of potential of average force      96 169
Cluster functions of ionic solution theory      163
Cluster functions, expansion of      147
Cluster integrals in correlation function expansion      96 169
Cluster integrals in potential of average force expansion      96 170
Cluster integrals, convergence of modified      165
Cluster integrals, divergence of      13 115 123 136
Cluster integrals, irreducible      47 51 60 89
Cluster integrals, modified irreducible      148 159 173
Cluster integrals, reducible      47 51 60 89
Cluster integrals, singularity of modified      173
Cluster, irreducible      48
Cluster, reducible      46
Common ion      230
Component potentials      36
Component potentials, cluster expansion of      104
Component potentials, examples of higher      38
Composition set      19
Concentration set      19
Connectivity      45 153
Convergence of cluster expansion, series      86 91 137 173
Convolution approximation      166
Convolution integral      127
Convolution theorem      127 182
Coordinate set      20
Correlation function      78
Correlation function for ionic solutions      167
Correlation function, relation to thermodynamic excess functions      98
Correlation function, spatial      79 85 93
Correlation function, uses      98 172
Coulomb potential      115 118
Coulomb potential, definition of      136 143
Covering of a set      28
Cumulant      31 47 48 89
CYCLE      124 127 149
Debye Hiickel limiting law      14 17 151 174 208 209
Debye Hiickel theory      139
Debye potential      17 137 141 142 159
Debye potential, correction to      170
Debye — Huckel limiting laws expansions, for mixed electrolyte solutions      200
Debye — Huckel limiting laws for      209
Debye — Huckel limiting laws for electrolyte solutions      196
Debye — Huckel limiting laws, partial      191 194
Debye — Huckel limiting laws, relation of Gex to      203
Debye — Huckel limiting laws, total      191 202
Dirac delta function      129
Dirac delta function, method to determine q(r)      143
Direct potential      36
Direct potential for ionic solutions      3 116 117
Direct potential, sectionally uniform $u^{*}_{i, j}$      214
Direct potential, solvent contributions to $u^{*}_{i, j}$      119
Direct potential, square-well form for $u^{*}_{i, j}$      215
Directly connected      45
Disjoint set      20
Distinguishable graphs      7 46
Donnan equilibrium      105
EDGE      46
Elements of a protograph      152
Elements of a set      18 263 264
Empty set      19
Excess Gibbs free energy, calculation from data for electrolyte mixtures      199
Excess Gibbs free energy, relation to      203
Excess thermodynamic functions      67 ff. 191
Excess thermodynamic functions, cluster expansions for      91 98 163
Fourier transform of      132
Fourier transforms      16 126
Fourier transforms, convolution theorem      127
Fourier transforms, inversion formula      128
Fourier transforms, table      131
Fuchs’s derivation of the cluster, theory of multicomponent systems      59
Fugacity      68
Functional derivative      94
g-bond chains      136 148
g-bond chains, sum over      136 137
Generating function      53
Generating function for partitions      32
Generating function for tree coefficients      56
Generic probability density      76
grand canonical ensemble      72
Grand partition function      71
Grand partition function, generalization of      75
graphs      6 43
Graphs, expansion of      147 177
Guggenheim’s deduction of the ideal solution equation from the cluster theory      101
Haga’s calculation of higher terms      222
Harned coefficients      201 236
Harned’s rule      201 226 230 235
Hetero ion      230
Higher-order limiting law      210 235 243
Hill’s theory of the Donnan equilibrium      105
Husimi tree      48 90
Hypothetical states      (see Standard states)
Indirectly connected      45
Inversion of Fourier transforms      128
k bonds      147 163
Kappagraph      163 177
Kirkwood - Scatchard function B(L,O)      218
Kirkwood superposition approximation      103
Labeled vertices      7 43 151
Lebowitz and Percus method to calculate the cluster expansion of the correlation function      94
Levine and Wrigley’s calculated values of $u^{*}_{i, j}$      122
Limiting laws      208 235 237 246
Mayer’s ionic solution theory      147 ff.
Mayer’s summation procedure (rearrangement)      14 166 145 148 173
McMillan — Mayer theory      72 84
Mean solute quantity      194
Mixed electrolyte solutions      225
Mixed electrolyte solutions, symmetric      234
Mixed electrolyte solutions, unsymmetric      85 244
Mixing fraction      197
Mixtures, symmetric and unsymmetric      85 100 192 195
Molal concentration scale      193 194
Molal ionic strength      196
Moment of a distribution      31
Moment of the concentration of charges      179
Multinomial theorem      25
nodes      148
Notation      17
Notation, brackets      22
Notation, dimensionless forms of functions for extensive thermodynamic variables      67
Notation, dimensionless forms of functions for scales on figures and entries in tables      237
Notation, dimensionless forms of functions for sets      18
Notation, dimensionless forms of functions sums, products, and integrals      22 31
Notation, dimensionless forms of functions thermodynamics of ionic solutions      193
Ordered products      158 178
Osmotic equilibrium      81 105 118 191 203 225
Partition      28 47 51 89
Partition set      22 29
Partition, ordered      57
Phase transition      86 98
Poirier’s calculations using the cluster theory      216 220
Poisson — Boltzmann equation      140 143 144 145
Poisson’s equation      134 139 140 143
Potential of average force      34 103
Potential of average force, cluster expansion of      96 104 169
Primitive model      1 214 239 246
Protograph      151
Prototype graph      153
Radial functions      130
Salpeter-Mattis method to calculate q(r)      143
Scatchard, Vonnegut, and Beaumont freezing point data for LaCUCaq)      213
Scatchard-Prentiss equation for electrolytic mixtures      243
Sequences of series      25
Sequences of series, compared to Taylor’s series      86
Sets      18
Sets as summation indices      22 23 31
Sets, classification of      22
Sets, notation for various      19
Sets, operations with      20
Shedlovsky and Maclnnes emf data for $LaCl_{3}(aq)$      213
Skeleton      6 43
Solutions      (see Mixtures)
Solvent, Solute      36 81 83 85 192
Specific probability density      76
Standard states      70
Standard states, hypothetical c=1 gas state $(\dag)$      192 204
Standard states, hypothetical m=1 solution state $({}^{o})$      192 204
Standard states, ideal gas state $({}^{id})$      68
Standard states, solution reference state (*)      194
Surface terms      46 53 60 91 116 164
Thermodynamic functions      67 191
Thiele seminvariant      31
topology      6 45
TREE      22 49
Tree coefficient      53
Tree coefficient, generating function for      56
Tree coefficient, recursion formula for      53
Tree Set t]{n}      51
van’t Hoff model      82
Vertex      6
Vertex cluster      50
Virial coefficient      13
Virial expansion      13 165
Virial, generalized      99
Yukawa potential      115
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте