|
|
 |
| Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: boundary conditions
| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | | Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | | | Cardy J. — Scaling and renormalization in statistical physics | | | Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 11 | | Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 257, 294 | | Abell M., Braselton J. — Differential Equations with Mathematica | 552, 555 | | Hunter J.K., Nachtergaele B. — Applied Analysis | 250 | | Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 24—25, 75, 86, 159 | | Hayek S.I. — Advanced mathematical methods in science and engineering | 115 | | Trottenberg U., Schuller A., Oosterlee C. — Multigrid | 7, 8, 93, 94, 148, 162, 167, 182, 260, 290, 292, 293, 301, 303—304, 313—314, 321, 326, 332, 354, 368, 375, 387, 408, 441, 588 | | Allen M.P., Tildesley D.J. — Computer simulation of liquids | 24 | | Gilkey P.B., Leahy J.V., Park J. — Spinors, Spectral Geometry, and Riemannian Submersions | 46 | | Donea J., Huerta A. — Finite Element Methods for Flow Problems | 19, 22 | | Stein E. (ed.), Ramm E. — Error-controlled adaptive finite elements in solid mechanics | 113, 114, 137, 183, 184, 185, 301, 310, 337 | | Smith I.M., Griffiths D.V. — Programming the finite element method | 54 | | Swanson D.G., Hoefer W.J.R. — Microwave Circuit Modeling Using Electromagnetic Field Simulation | 66, 72—73 | | Frenkel D., Smit B. — Understanding Molecular Simulation: from algorithms to applications | 32 | | Patton R. — Software Testing | 2nd 3rd | | Saad Y. — Iterative Methods for Sparse Linear Systems | 45, 46 | | Hull J. — Options, Futures, and Other Derivative Securities | 220, 293 | | Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 2, Solid mechanics) | 291 | | Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 3, Fluid dynamics) | 81, 82, 279, 284 | | Versteeg H.K., Malalasekera W. — An introduction to computational fluid dynamics | 35—36, 88, 93—94, 94, 96—97, 102, 107, 121, 124, 134, 192, 197—209, 213 | | Whittaker E.T., Watson G.N. — A Course of Modern Analysis | 387 | | Conte R. — Painleve Property: One Century Later | 611 | | Benson D. — Mathematics and music | 86, 395 | | Kundu P.K., Cohen I.R. — Fluid mechanics | 121—122, 619 | | Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles | 3, 4, 9, 30—31 | | Maple 8. Learning guide | 72 | | Murnaghan F.D. — Finite deformation of an elastic solid | 68 | | Sadd M.H. — Elasticity: theory, applications, and numerics | 84 | | Drazin P. — Introduction to Hydrodynamic Stability | 28, 95 | | Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 1, 2, 6 | | Jaswon M.A. — The Theory of Cohesion. An Outline of the Cohesive Properties of Electrons in Atoms, Molecules and Crystals | 20, 155 | | Davies E. — Spectral Theory and Differential Operators | 1 | | Wilmott P., Bowison S., DeWynne J. — Option Pricing: Mathematical Models and Computation | 45, 76 | | Ewing W.M., Jardetzky W.S., Press F. — Elastic waves in layered media | 7 | | Merris R. — Combinatorics | 321 | | Boyd J.P. — Chebyshev and Fourier Spectral Methods | 10 | | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 484, 591, 592 | | Serre D. — Handbook of Mathematical Fluid Dynamics, Vol. 1 | 22, 34, 37, 38, 40, 52, 57, 60, 84—86, 138 | | Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 15 | | Willers A. — Practical Analysis | 289 | | Rutherford D.E. — Vector Methods | 114, 117, 119 | | Powers D.L. — Boundary Value Problems: And Partial Differential Equations | See also initial value-boundary value problems | | Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 38, 326 | | Elliott R.J., Gibson A.F. — An Introduction to Solid State Physics and Its Applications | 34 | | Fradkin E. — Field theories of condensed matter systems | 276 | | Weatherburn C. — Advanced Vector Analysis | 31, 36, 114 | | Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld | 10 | | Alexiades V. — Mathematical Modeling of Melting and Freezing Processes | 13, 17 | | Eringen A.C. — Mechanics of continua | 209, 438 | | Yeomans J.M. — Statistical Mechanics of Phase Transitions | 67, 86 | | Walecka J.D. — Fundamentals of statistical mechanics | 161 | | Dudgeon D.E., Mersereau R.M. — Multidimensional Digital Signal Processing | 165, 168—171, 230—234 | | Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 163, 240 | | Griffits D.J. — Introduction to quantum mechanics | 25, 54 | | Hull J.C. — Options, futures and other derivatives | 243 | | Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 119, 121 | | Collins G.W. — Fundamentals of Stellar Astrophysics | 102 | | Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 80, 84, 85, 104 | | Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 25 | | Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 242, 351, 363, 370 | | Konopinski E.J. — Electromagnetic fields and relativistic particles | 58, 82 | | Zajac A. — Optics | 112, 288 | | Lay D.C. — Linear Algebra And Its Applications | 257 | | Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 3, 5, 43, 44, 46, 54, 69, 88—90, 94, 105, 118, 139, 171, 214, 230, 312, 344, 348, 361, 362, 416, 488, 491 | | Schercliff J.A. — Vector Fields | 152, 178, 249, 265 | | Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 417, 419—421 | | Pedregal P. — Introduction to Optimization | 139 | | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 160 | | Greenberg M.D. — Advanced engineering mathematics | 6 | | Wolf-Gladrow D.A. — Lattice-gas cellular automata and lattice Boltzmann models | 79 | | van de Hulst H.C. — Light Scattering by Small Particles | 7, 25, 329 | | Prigogine I. — Nonequilibrium statistical mechanics | 22, 23 | | Karman T., Biot A.M. — Mathematical Methods in Engineering | 22 | | Feodosiev V.I. — Advanced Stress and Stability Analysis | 230 | | Fletcher C.A. — Computational Techniques for Fluid Dynamics. Vol. 1 | 19, 20, 32—34, 36, 37—38, 101, 126, 137 | | Brillouin L. — Wave Propagation in Periodic Structures | 30, 35, 69, 127, 159 | | Heitler W. — Elementary Wave Mechanics With Applications to Quantum Chemistry | 22, 34 | | Munk M.M. — Fundamentals Of Fluid Dynamics For Aircraft Designers | 15, 47 | | Bube R.H. — Electronic Properties of Crystalline Solids: An Introduction to Fundamentals | 5 | | Strichartz R.S. — The way of analysis | 464, 519, 520, 529 | | Dekker H. — Classical and quantum mechanics of the damped harmonic oscillator | 27, 31, 32 | | Rickayzen G. — Green's functions and condensed matter | 2, 3—6, 19, 27, 55 | | Barber J.R. — Elasticity | 5, 210, 241 | | Adair R.K. — The Great Design: Particles, Fields, and Creation | 14 | | Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics | 31 | | Povey M.J. — Ultrasonic Techniques for Fluids Characterization | 97, 105, 112—114 | | Kunz K.S., Luebbers R.J. — The finite difference time domain method for electromagnetics | see also "Specific types" | | Chandrasekhar S. — Radiative Transfer | 15, 20, 22, 43, 45, 291 | | Love A.E.H. — A Treatise on the Mathematical Theory of Elasticity | 100, 134, 167, 228 | | Chung F.R.K. — Spectral Graph Theory | 175 | | Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles | 5, 7, 9—10, 78, 113, 145, 191, 192, 196 | | Eschenauer H., Olhoff N., Schnell W. — Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization | 103, 117, 147, 158, 234, 242, 244 | | MacRobert T.M. — Spherical Harmonics an Elementary Treatise on Harmonic Functions with Applications | 29 | | Dutra S.M. — Cavity quantum electrodynamics | 272 | | Portela A., Charafi A. — Finite Elements Using Maple: A Symbolic Programming Approach | 49, 54, 59, 65, 89, 179, 180, 252 | | Saad Y. — Iterative methods for sparse linear systems | 46, 47 | | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 273, 361 | | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 257 | | Gröbner W., Knapp H, — Contributions to the method of Lie series | 67, 71, 92 | | Achenbach J.D. — Wave propagation in elastic solids | 56, 82 | | Adomian George — Nonlinear stochastic operator equations | 231 | | Cercignani C. — Theory and Application of the Boltzman Equation | 49, 51, 104, 105,118, 162, 212, 213, 215, 224, 245, 252, 256, 269, 295, 342, 354, 359, 395, 396, 397, 401 | | Anderson P.W. — The theory of superconductivity in the high-Tc curprates | 165, 166, 170—172 | | Feller W. — Introduction to probability theory and its applications (Volume II) | 337—343, 477 | | Pope S.B. — Turbulent Flows | see impermeability, no-slip, wall functions | | Eddington A. — The Internal Consitution of the Stars | 95, 116, 127, 211 | | Barrow J.D., Tipler F.J. — Anthropic Cosmological Principle | 444—449 | | Cohen-Tannoudji C., Dupont-Roc J., Grynberg G. — Photons and atoms: introduction to quantum electrodynamic | (see “Periodic boundary conditions”) | | Desloge E.A. — Classical Mechanics. Volume 1 | 435 | | Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 18, 56 | | Betts J.T. — Practical Methods for Optimal Control Using Nonlinear Programming | 62 | | Goodman J.W. — Introduction to Fourier Optics | 37 | | Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 2, 24, 219 | | Deák P. — Computer Simulation of Materials at Atomic Level | 11, 18, 98, 705 | | Selvadurai A.P.S. — Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation | 77, 109 | | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 160, 3, 48, 63, 74, 146, 147 | | Stratton J.A. — Electromagnetic Theory | 34—38, 163—165 | | Efros A.L. (ed.), Pollak M. (ed.) — Electron-electron interactions in disordered systems | 346 | | Vincent K.C. — Fundamentals of Composite Materials | 147 | | Bernstein R.B. — Atom-Molecule Collision Theory: Guide for the Experimentalist | 308, 317, 330 | | Avery J. — Creation and Annihilation Operators | 17, 18, 19, 22, 157, 180, 181 | | Bateman H. — Partial Differential Equations of Mathematical Physics | 2 | | Stahl A. — Physics with tau leptons | 17, 18, 19, 22, 157, 180, 181 | | Nicolis G., Prigogine I. — Self-organization in nonequilibrium systems | 29, 64 | | Antia H.M. — Numerical Methods for Scientists and Engineers | 521, 564, 571, 572, 600, 914 | | Olver P.J., Shakiban C. — Applied linear. algebra | 295, 588, 589, 615 | | Kreyszig E. — Advanced engineering mathematics | 203, 540, 558, 571, 587 | | Slater J.C. — Quantum Theory of Atomic Structure vol1 | 61—74 | | D'Inverno R. — Introducing Einstein's Relatvity | 171, 184, 338 | | Sears F.W. — Optics | 170 | | Ding H., Chen W., Zhang L. — Elasticity of Transversely Isotropic Materials | 23-25, 30, 36, 80, 86, 93, 102, 103, 109, 114, 119, 122, 123, 130-133, 142, 143, 145, 146, 149, 151, 153, 156, 163, 165, 167, 170, 172, 175-179, 187, 188, 196, 197, 202, 203, 217, 249, 251, 256, 258, 260, 261, 264-266, 278, 279, 306, 311, 316, 318, 319, 331, 332, 334, 346-348, 360, 369, 376, 381 | | Stewart I.W. — The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction | 46, 150 | | Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 8, 28, 104, 109 | | Cotterill R.M.J. — Biophysics: An Introduction | 74, 347 | | Grosche C., Steiner F. — Handbook of Feynman path integrals | 38, 40, 61-63, 130-131, 156, 158, 213, 217, 347-353 | | Guru B.S., Hiziroğlu H.R. — Electromagnetic Field Theory Fundamentals | 104—8 | | Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 77—81 | | McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 275ff | | Quarteroni A., Saleri F. — Scientific Computing with MATLAB | 189, 205 | | Pathria P.K. — Statistical Mechanics | 449, 495—497 | | Meriam J. L. — Engineering Mechanics: Statics. Volume 1 | 285 | | Conte R. — The Painlevé property: One century later | 611 | | Amit D.J. — Field theory, the renormalization group, and critical phenomena | 278 | | Curle N., Davies H. — Modern Fluid Dynamics. Volume 1. Incompressible flow | 32, 84, 129 | | Hercules Proceedings (Vol. I) (unknown book) | 164, 171 | | Nash C. — Differential Topology and Quantum Field Theory | 127 | | Eringen A.C. (ed.) — Continuum physics (vol. 4) Polar and Nonlocal Field Theories | 59 | | Wilmott P., Howison S., Dewynne J. — The Mathematics of Financial Derivatives : A Student Introduction | 45, 59 | | Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer | 16—17, 34, 402—413 | | Ashcroft N.W., Mermin N.D. — Solid State Physics | 32 | | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 400—401 | | Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions | 58 | | Simmons G.F. — Differential Equations with Applications and Historical Notes | 124 | | Astfalk G. — Applications on Advanced Architecture Computers | 245, 332 | | Bona C., Palenzuela-Luque C. — Elements of Numerical Relativity: From Einstein's Equations to Black Hole Simulations (Lecture Notes in Physics) | 93 | | Owen D.R.J., Fawkes A.J. — Engineering Fracture Mechanics: Numerical Methods and Applications | 97 | | Adomian G. — Stochastic Systems | 8, 11, 13 | | Rutherford D.E. — Vector methods. Applied to differential geometry, mechanics, and potential theory | 114, 117, 119 | | Zakrzewski W.J. — Low Dimensional Sigma Models | 27, 28 | | Tinkham M. — Introduction to superconductivity | 117—118, 121, 136 | | Sutton O.G. — Mathematics in action | 60, 119 | | Goertzel G. — Some Mathematical Methods of Physics | 75, 86—91 | | Toro E.F. — Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction | 42, 182, 222, 223 | | Marks R.J.II. — The Joy of Fourier | 668 | | Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group | 24 | | Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics | 22, 23 | | Ilachinski A. — Cellular automata. A discrete universe | 41 | | Jones H. — Theory of Brillouin Zones and Electronic States in Crystals | 9, 17 | | Coulson C.A. — Waves: a mathematical approach to the common types of wave motion | 1, 19, 40, 44, 51, 68, 87, 90, 99, 107, 111 | | Alder B., Fernbach S., Rotenberg M. — Methods in computational physics. Volume 3. Fundamental methods in hydrodynamics | 127, 191, 251, 355, 361 | | Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century | ix, 132—134 | | Stratton J.A. — Electromagnetic Theory | 34—38, 163—165, 243, 247, 483—485 | | Yoo T.S. (ed.) — Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis | 105 | | Eringen A.C., Suhubi E.S. — Elastodynamics (vol. 2) Linear theory | 346, 347, 443 | | Dynkin E.B., Yushkevich A.A. — Markov processes; theorems and problems | 147, 148, 176, 198 | | Beard D.B. — Quantum Mechanics | 4, 12 | | Atkins P. — Molecular Quantum Mechanics | 44 | | John Strikwerda — Finite difference schemes and partial differential equations | 176 | | Demidovich B. (ed.) — Problems in mathematical analysis | 363 | | Collatz L. — The numerical treatment of differential equations | 2 et seq. | | Büchner J., Dum C., Scholer M. — Space Plasma Simulation | 9, 16, 19, 199, 217 | | Borodich F. — Theory of Elasticity | 24, 96 | | Alder B. (ed.), Fernbach S. (ed.), Rotenberg M. (ed.) — Methods in computational physics: advances in research and applications. Volume 3. Fundamental methods in hydrodynamics | 127, 191, 251, 355, 361 | | Achmanov S.A., Nikitin S.Yu. — Physical Optics | 388 | | Zhang K., Li D. — Electromagnetic Theory for Microwaves and Optoelectronics | 18 | | Varga R.S. — Matrix iterative analysis | 182, 250 | | Lighthill M. J. — Introduction to Fourier analysis and generalized functions | 4—5, 9 | | Avramidi I.G. — Heat Kernel and Quantum Gravity | 10, 14 | | Brewer D.F. — Progress in Low Temperature Physics. Volume X | 24, 36 | | McGuire J.H. — Electron correlation dynamics in atomic collisions | 249 | | Faddeev L.D., Takhtajan L., Reyman A.G. — Hamiltonian methods in the theory of solitons | 11 | | Hugh D. Young, Roger A. Freedman — University physics with modern physics | 505—507, 1351, 1388—1389, 1402 | | Wilson W.F.R.S. — Theoretical physics. Volume II. Electromagnetism and optics | 9, 64, 174 | | Beard D.B. — Quantum Mechanics | 4, 12 | | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 44 | | Beranek L.L. — Acoustics | 29 | | Percival D.B., Walden A.T. — Wavelet methods for time series analysis | see "Circular or reflecting" | | Guyon E., Hulin J., Petit L. — Physical Hydrodynamics | 144—147 | | Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | 333, 334, 336, 337 | | Strang G. — Introduction to Applied Mathematics | 157, 172, 174, 184, 191, 248 | | Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 160, 300 | | Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 4, 14, 33 | | Oertel H. — Prandtl's Essentials of Fluid Mechanics (Applied Mathematical Sciences) | 371, 381, 391, 398 | | Anderson J.L. — Principles of Relativity Physics | 334, 339, 348, 432 | | Ashby N., Miller S.C. — Principles of modern physics | 170, 192, 316 | | Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 339 | | Greiner W. — Relativistic quantum mechanics. Wave equations | 328 | | Boyd R.W. — Nonlinear Optics | 119 | | Bluman G.W. — Similarity Methods for Differential Equations | 143, 145, 147, 148, 152, 160, 162, 172, 222, 227, 230, 231 | | Sapidis N.S. — Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design | 233, 237, 211 | | Ketterson J.B., Song S. — Superconductivity | 34, 36ff, 40, 298ff, 303, 440 | | Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 251 | | Salmhofer M. — Renormalization: an introduction | 19 | | Stoker J. J. — Water Waves: The Mathematical Theory with Applications | 10, 19 | | Krasnov N.F. — Aerodynamics. Part 1. Fundamentals of theory. Aerodynamics of an Airfoil and a Wing | 132ff, 424 | | Pan G.W. — Wavelets in Electromagnetics and Device Modeling | 19, 20, 141, 160, 189, 201, 253, 278, 280, 319, 433, 455—460, 480—481, 485, 501, 512 | | Wilson A.H. — The Theory of Metals | 14 | | Langhaar H.R. — Energy Methods in Applied Mechanics | 76 | | Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 12—13, 85, see also "Periodic boundary conditions" | | Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 12—13, 85, see also "Periodic boundary conditions" | | Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 357 | | Fox R.O. — Computational Models for Turbulent Reacting Flows | 57, 114, 126, 146, 157—160, 202, 204, 206, 212, 228, 236, 255, 260, 264, 346—348 | | Bennett W.R. — Physics of Gas Lasers | 6 | | Rao S.S. — Mechanical Vibrations | 377 | | Binder K., Heermann D.W. — Monte Carlo Simulation in Statistical Physics | 23, 26, 145, 149 | | Bohm-Vitense E. — Introduction to Stellar Astrophysics: Volume 3 | 108 | | Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 37, 150ff, 177ff, 189, 194, 199, 219, 235, 242, 464, 465, 471, see "Dirichlet", "Neumann" | | Akhmanov S.A., Nikitin S.Yu. — Physical Optics | 388 | | Hopf L., Nef W. — Introduction To The Differential Equations Of Physics | 3, 74, 82, 95, 135, 152 | | Lienhardt J.H. IV, Lienhardt J.H. V — A heat transfer textbook | 70, 142—143 | | Johnson W.C. — Mathematical and physical principles of engineering analysis | 287 | | Bell E.T. — Mathematics: Queen and Servant of Science | 318—319, 334 | | Greenberg M. — Advanced engineering mathematics | 6 | | Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 72 | | Cercignani C. — Rarefied Gas Dynamics | 8, 23, 24, 30, 40—43, 48, 50, 54, 57, 60, 61, 71, 72, 77, 79, 84, 85, 89, 90, 100, 101, 103, 104, 111, 112, 118, 119, 137, 152, 154, 163, 168, 171, 173—175, 190, 216, 225, 234, 252, 273, 274, 278, 280, 282, 283, 287, 290, 291, 297, 301, 302 | | Moeller K. — Optics: Learning by Computing, with Examples Using Maple, MathCad®, Matlab®, Mathematica®, and Maple® (Undergraduate Texts in Contemporary Physics) | 254 | | Stakgold I. — Boundary value problems of mathematical physics | 64—69, see also "Initial conditions" | | Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer | 16—17, 34, 402—413 | | Smith I.M., Griffiths D.V. — Programming the finite element method | 68—70 | | Krall N., Trivelpiece A. — Principles of Plasma Physics | 245—246 | | Prigogine I. (ed.) — Advances in Chemical Physics. Volume XIX | 279 | | Cowley J. — Diffraction physics | 173 | | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 119, 121 | | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 119, 121 | | Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 119, 121 | | Dennery P., Krzywicki A. — Mathematics for Physicists | 258, 334, 341—346 | | Brandt S., Dahmen H.D. — Quantum mechanics on the personal computer | 42, 117, 141 | | Biskamp D. — Nonlinear Magnetohydrodynamics | 57—58, 137, 143 | | Ferziger J.H., Kaper H.G. — Mathematical theory of transport processes in gases | 77—79, see also "Slip flow problem" | | Liboff R.L. — Introductory quantum mechanics | 204, 390, 419 |
|
|