Авторизация
Поиск по указателям
Langhaar H.R. — Energy Methods in Applied Mechanics
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Energy Methods in Applied Mechanics
Автор: Langhaar H.R.
Аннотация: Students of engineering usually receive only fragmentary instruction in the important principles of classical mechanics, stemming from the works of Huygens, Leibniz, Bernoulli, and Lagrange, which assign a central role to the concepts of work, potential energy, and kinetic energy. These laws, designated as "energy principles of mechanics" are sufficiently general to allow Newton's second Jaw to be deduced from them. An integrated and modern treatment of energy principles of mechanics, with applications to dynamics of rigid bodies, analyses of elastic frames, general elasticity theory, the theories of plates and shells, the theory of buckling, and the theory of vibrations, is undertaken in this work.
Язык:
Рубрика: Механика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1962
Количество страниц: 350
Добавлена в каталог: 15.04.2007
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
action 239
Adiabatic process 13 14
Airy stress function 130 163 193
Atwood machine 262
Beam columns 44—48
Beams 39—44
Beams, boundary conditions for 43
Beams, cantilever 75
Beams, complementary energy of 144—146
Beams, curved 48—52 86—89
Beams, differential equation of 85—86
Beams, fixed-end deflections of 60
Beams, fixed-end moments of 60
Beams, influence function for 283—285
Beams, lateral buckling of 218—224
Beams, redundant 149—150
Beams, rotary inertia of 288—289
Beams, shear deflection of 42 288—289
Beams, shear energy of 43
Beams, stiffness factor for 59
Beams, torsion of 43
Beams, vibrations of 280—283
Bernoulli, Jean 1
bonds 25
Born, Max 75
boundary conditions 76
Boundary conditions of beams 43
Boundary conditions of plates 168—170
Boundary conditions, forced 76
Boundary conditions, linear 78
Boundary conditions, natural 77 81
British thermal unit 11
Buckling 201—228
Buckling of a linkage 207—209
Buckling of beams 218—224
Buckling of circular plate 216—218
Buckling of columns 203—206 224—228
Buckling of rectangular plate 214—216
Buckling, bifurcation theory of 202
Buckling, relation to quadratic forms 324—327
Buckling, Trefftz's criterion of 211
Buoyancy, center of 38
Calculus of variations 75—103
Calculus of variations, auxiliary differential equations in 91—92
Calculus of variations, Euler's equation of 82 84—85 96 97
Calculus of variations, isoperimetric problems of 89—90
Calorie 11
Castigliano's theorem of least work 126—130
Castigliano's theorem on deflections 133—136
Castigliano's theorem, applications of 138—144
Castigliano's theorem, corollaries to 137—138
Catenary 89—90
Column on elastic foundation 209—210
Column, Euler formula for 46 206
Column, postbuckling of 203—206
Column, shear effect in 213—214
Column, torsional-flexural buckling of 224—228
Complementary energy 127 128
Complementary energy of beams 144—146
Complementary energy of plates 173
Complementary energy, density of 119—121
Complementary energy, principles of 120 128 129 132 133 135
Configuration 2
Configuration space 3
Configuration space, connected 3
Configuration space, continuity in 5
Configuration space, coordinates in 6—8
Configuration space, distance in 4
Configuration space, neighborhood in 4
Configuration space, paths in 5
Configuration space, points in 3
Configuration space, triangle law for 4
Conservative forces 20 26
Conservative forces, external 20
Conservative forces, internal 20
Conservative systems 18—33
Conservative systems in kinetic sense 18
Conservative systems in statical sense 18
Conservative systems, Lagrange equations for 239—240
Constraints 2
Constraints, time-dependent 241—243
Coordinate lines 113
Coordinate surfaces 112
Coordinates for shells 180
Coordinates for surfaces 177
Coordinates, curvilinear 112—115
Coordinates, cylindrical 114
Coordinates, generalized 6—8
Coordinates, normal 275
Coordinates, orthogonal 112—115 177
Coordinates, spherical 114
Crystals 122—123
Crystals 122—123
D'Alembert's principle 235
D'Alembert's principle 235
Degrees of freedom 8
Degrees of freedom 8
Degrees of freedom, finite 8 21
Degrees of freedom, finite 8 21
Degrees of freedom, infinite 8
Degrees of freedom, infinite 8
Dilatation 107
Dilatation 107
Displacements of a mechanical system 2
Displacements of a mechanical system 2
Displacements, principle of 15
Displacements, principle of 15
Displacements, virtual 13
Displacements, virtual 13
Divergence theorem 111
Divergence theorem 111
Eigenfunctions 281
Eigenfunctions 281
Eigenvalues 281
Eigenvalues 281
Elastic systems 21
Elastic systems 21
Equilibrium 13
Equilibrium 13
Equilibrium, stability of 29—33
Equilibrium, stability of 29—33
Erg 11
Erg 11
Euler, L., angles of 250 252
Euler, L., angles of 250 252
Euler, L., column formula of 46 206
Euler, L., column formula of 46 206
Euler, L., dynamical equations of 253—255
Euler, L., kinematical equations of 253
Euler, L., kinematical equations of 253
Euler, L., variational equation of 82 84—85 96 97
Extremal 82
force 10
force 10
Force, conservative 20 26
Force, conservative 20 26
Force, exciting 273
Force, exciting 273
Force, external 10 17
Force, external 10 17
Force, field of 25
Force, field of 25
Force, generalized 16—18 254
Force, internal 10
Force, lines of 25
Force, lines of 25
Fourier series in beam theory 44—47
Fourier series in beam theory 44—47
Fourier series in ring theory 51—52
Fourier series in ring theory 51—52
Fourier's inequality 13—14
Fourier's inequality 13—14
Frame analysis by slope-deflection theory 59 63
Frame analysis by slope-deflection theory 59 63
Frame analysis by stationary potential energy 58—65
Frame analysis by stationary potential energy 58—65
Frame analysis by unit-dummy-load method 148—149
Frame analysis by unit-dummy-load method 148—149
frequency 270
frequency 270
Frequency, equation of 270 281
Friction, sliding and viscous 19
Friction, sliding and viscous 19
Galileo 1
Galileo 1
Generalized coordinates 6—8
Generalized coordinates 6—8
Gimbals 259
Gimbals 259
Green, G. 159
Green, G. 159
Green, G., theorem of 93
Green, G., theorem of 93
Gyro 259
Gyro 259
Gyroscope 259—261
Gyroscope 259—261
Hamilton, W.R. 233
Hamilton, W.R. 233
Hamilton, W.R., equations of 244—245 248
Hamilton, W.R., equations of 244—245 248
Hamilton, W.R., function of 243—244
Hamilton, W.R., function of 243—244
Hamilton, W.R., principle of 234—239
Hamilton, W.R., principle of 234—239
Harmonic functions 27
Harmonic functions 27
Holonomic systems 5 8 17 22 24
Holonomic systems 5 8 17 22 24
Hooke, R. 104
Hooke, R. 104
Hookean materials 121—126
Hookean materials 121—126
Hysteresis 11
Hysteresis 11
Internal energy 11 12 21
Internal energy 11 12 21
Internal energy of distortion 117
Internal energy of distortion 117
Internal energy of ideal gas 293
Internal energy, density of 117
Internal energy, density of 117
Isotropic materials 124—126
Isotropic materials 124—126
Joule 11
Joule 11
Kinematics of general mechanical systems 2—8
Kinematics of general mechanical systems 2—8
Kinematics of rigid bodies 249—253
Kinematics of rigid bodies 249—253
Kinematics of rolling sphere 8 267
Kinematics of rolling sphere 8 267
Kinematics, Euler equations in 253
Kinematics, Euler equations in 253
kinetic energy 10 11
kinetic energy 10 11
Kinetic energy of a rigid body 254
Kinetic energy of a rigid body 254
Kinetic energy of general systems 233—234
Kinetic energy of general systems 233—234
Kinetic energy, law of 10
Kinetic energy, law of 10
Lagrange multipliers 89 92 174 296
Lagrange multipliers 89 92 174 296
Lagrange, J.L. 1 2 39 272
Lagrange, J.L. 1 2 39 272
Lagrangian continuity equation 295
Lagrangian continuity equation 295
Lagrangian dynamical equations for conservative systems 239—240
Lagrangian dynamical equations for conservative systems 239—240
Lagrangian dynamical equations for nonconservative systems 247—249
Lagrangian dynamical equations for nonconservative systems 247—249
Lame, coefficients of 113 181
Lame, elastic constants of 124
Laplace's equation 27
Laplace's equation 27
Legendre transform 120 136 244
Legendre transform 120 136 244
Leibniz, G.W. 2 11
Leibniz, G.W. 2 11
Leonardo da Vinci 1
Leonardo da Vinci 1
Material points 2
Material points 2
Matrix of strain 105
Matrix of strain 105
Matrix of stress 110
Matrix of stress 110
Matrix, rank of 309
Matrix, rank of 309
Matrix, regular 312
Matrix, regular 312
Maxwell — Mohr method 141 143
Maxwell — Mohr method 141 143
Maxwell's law of reciprocity 137 284
Maxwell's law of reciprocity 137 284
Mechanical energy 23
Mechanical energy 23
Mechanical energy, conservation of 23 244
Mechanical energy, conservation of 23 244
Mechanical systems 2—8
Mechanical systems 2—8
Mechanical systems, configuration of 2
Mechanical systems, conservative 18—33
Mechanical systems, displacement of 2
Mechanical systems, geometric terminology for 3
Mechanical systems, geometric terminology for 3
Mechanical systems, holonomic 8 22 24
Mechanical systems, holonomic 8 22 24
Mechanical systems, infinite 14
Mechanical systems, infinite 14
Mechanical systems, nonholonomic 5 17
Mechanical systems, nonholonomic 5 17
Mechanical systems, unchecked 16
Mechanical systems, unchecked 16
Minimum, absolute, relative, and improper 79
Minimum, absolute, relative, and improper 79
Minimum, proper 80
Minimum, proper 80
Minimum, theorem of potential energy 30
Minimum, theorem of potential energy 30
Momentum, generalized 243 255
Momentum, generalized 243 255
Newton's Laws 8 238
Newton's Laws 8 238
Newton's laws of gravitation 20 26
Newton's laws of gravitation 20 26
Newton's laws, third 10
Newton's laws, third 10
Newtonian potential 26 27
Newtonian potential 26 27
Newtonian potential for charged sphere 28
Pendulum with flexible suspension 271
Pendulum with flexible suspension 271
Pendulum with moving pivot 249
Pendulum with moving pivot 249
Pendulum, double 240—241
Pendulum, double 240—241
Pendulum, spherical 245
Pendulum, spherical 245
Реклама