Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Strength of Materials: A New Unified Theory for the 21st Century
Àâòîðû: Patnaik S., Hopkins D.
Àííîòàöèÿ: Strength of materials is a common core course requirement in U.S. universities (and those elsewhere) for students majoring in civil, mechanical, aeronautical, naval, architectural, and other engineering disciplines. The subject trains a student to calculate the response of simple structures. This elementary course exposes the student to the fundamental concepts of solid mechanics in a simplified form. Comprehension of the principles becomes essential because this course lays the foundation for other advanced solid mechanics analyses. The usefulness of this subject cannot be overemphasized because strength of materials principles are routinely used in various engineering applications. We can even speculate that some of the concepts have been used for millennia by master builders such as the Romans, Chinese, South Asian, and many others who built cathedrals, bridges, ships, and other structural forms. A good engineer will benefit from a clear comprehension of the fundamental principles of strength of materials. Teaching this subject should not to be diluted even though computer codes are now available to solve problems.
ßçûê:
Ðóáðèêà: Òåõíîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 1 edition
Ãîä èçäàíèÿ: 2003
Êîëè÷åñòâî ñòðàíèö: 750
Äîáàâëåíà â êàòàëîã: 27.10.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Airy formulation xv 556
Airy, George Biddel xvii
Aluminum 28 685
American Society of Testing and Materials (ASTM) 31
Angle of twist 224
Angle of twist in composite shafts 232—233
Angle of twist, calculation of 615
Angle of twist, displacement 25
Angle of twist, relationship between strain and 224—225
Archimedes 42
Auxiliary structure, virtual force from 508
Axial (normal) force 7 10 687—688
Axial (normal) force, sign convention for 18 20
Axial displacement 25
Back-substitution 654—655
Bar elements, equilibrium matrix for 565—567
Bar elements, flexibility matrix for 567—568
Bar elements, stiffness matrix for 568—569
Bar member, truss 55—56
Bar member, truss, deformation 74
Bar member, truss, displacement 72—73
Bar member, truss, force analysis 57—59
Bar member, truss, force analysis of a composite bar 60—62
Bar member, truss, force analysis of a octahedral bar 65—68
Bar member, truss, force analysis of a tapered bar 63—65
Bar member, truss, free-body diagrams 58—59
Bar member, truss, interface forces 59
Bar member, truss, positive direction for forces 59
Bar member, truss, strain 74—75
Bar member, truss, stress 68—70
Bar(s) 2 3
Bar(s), composite 121—122
Bar(s), deformation 25
Bar(s), example of fixed 571—578
Bar(s), force in a truss 115—118
Bar(s), sketch for 23
Beam(s), axis of 7
Beam(s), column 245
Beam(s), deformation 25
Beam(s), dimensions of 10
Beam(s), formulas 690—701
Beam(s), members 3
Beam(s), sketch for 23
Beams, indeterminate, applications 311
Beams, indeterminate, clamped 317—328 548—549
Beams, indeterminate, equations used to analyze 311
Beams, indeterminate, examples of 312—314
Beams, indeterminate, flexibility matrix 329—337
Beams, indeterminate, integrated force method 317—328 345—350 355—360
Beams, indeterminate, internal forces in 315—317
Beams, indeterminate, mechanical load 318—328
Beams, indeterminate, propped cantilevered 345—351 697—699
Beams, indeterminate, redundant force for 605—612
Beams, indeterminate, redundant force for, supported by a tie rod 615—622
Beams, indeterminate, response variables 311
Beams, indeterminate, settling of support 335—337 343—344
Beams, indeterminate, stiffness method 337—355 360—366
Beams, indeterminate, strain energy 325
Beams, indeterminate, thermal load 333—334 341—342
Beams, indeterminate, three-span 352—366
Beams, simple, bending moment diagrams 131 134—152
Beams, simple, boundary conditions 132—134
Beams, simple, built-up, and interface shear force 197—202
Beams, simple, cantilevered 39—40 129 130 586—592 624—625 690—693
Beams, simple, composite 202—209
Beams, simple, coordinate axes 120—130
Beams, simple, curvature 154 155
Beams, simple, displacement/deflection 132 164—179
Beams, simple, examples of 129 130
Beams, simple, fixed 699—701
Beams, simple, flexure formula 153—159
Beams, simple, internal forces, analysis of 131—148
Beams, simple, neutral plane 130—131 154
Beams, simple, relationships between bending moment, shear force, and load 149—152
Beams, simple, settling of supports 183—184
Beams, simple, shear center 184—197
Beams, simple, shear force diagrams 134—148
Beams, simple, shear stress formula 159—164
Beams, simple, simply supported 129 130 546—548 625—626 693—697
Beams, simple, strain, calculating 165—170
Beams, simple, thermal displacement in 179—183
Beltrami, Eugenio xvii
Bending moment 11 15—16 689
Bending moment, beam 131 134—152
Bending moment, sign convention for 18 21
Bernoulli's formula 49
Bernoulli, Jacob xvii 32 48 154 164
Bernoulli, Johan xvii
Betti's theorem 541—544
Bifurcation point 477—478
Boundary compatibility condition (BCC) ix-x
boundary conditions ix 132—134
Boussinesq, Joseph xvii
Brahe, Tyco 42
Buckling, equation 481—487 see
Buckling, parameter 481 see
Buckling, point 477 see
Built-up beams and interface shear force 197—202
Cantilevered beams 39—40 129 130 586—592 624—625 690—693
Cantilevered beams, propped 345—351 697—699
Cantilevered shafts 218 219
Castigliano's first theorem 523—526
Castigliano's second theorem 93—96 537—539
Castigliano, Alberto xvii
Cauchy, Augustin ix xvii
Celsius 4
Centroid 660
Channel section 184
Choleski method 652—655
Circular shafts, power transmission and 233—236
Clapeyron, Emile xvii
Clebsch, Alfred xvii
Coefficient of linear expansion 29—30
Column buckling, effective length of column 487—488
Column buckling, equilibrium 478—479
Column buckling, equilibrium equations 479—481
Column buckling, features of 475—478
Column buckling, secant formula 488—492
Column buckling, solution of buckling equation 481—487
Columns, clamped 483—485 487—488
Columns, clamped-free 487—488
Columns, clamped-pinned 485—488
Columns, simply supported 481—483 487—488
Compatibility condition (CC) ix x xii
Compatibility condition (CC), bars, fixed 573—575
Compatibility condition (CC), beams 317
Compatibility condition (CC), finite element method 557
Compatibility condition (CC), frame 405
Compatibility condition (CC), null property 273
Compatibility condition (CC), shafts (indeterminate) 375—376
Compatibility condition (CC), trusses (indeterminate) 269—270
Compatibility condition (CC), trusses (single-bay) 582—584
Compatibility matrix xiii 562
Compatibility matrix, beams (cantilevered) 588—589
Compatibility matrix, frame 412
Compatibility matrix, shaft 376
Complementary energy, principle of 534—537
Complementary strain energy 499—500
Complementary strain energy of total deformations 503—504
Complementary virtual work, concept 509
Complementary virtual work, principle of 528—534
Complementary work 504—505
Completed Beltrami-Michell formulation (CBMF) xv xvii 555 556
Composite bars, force analysis of a 60—62 121—122
Composite beams 202—209
Composite shafts, angle of twist in 232—233
Compression 475
Computer code 703—715
Concrete 203
Conjugate beam concept 622—626
Coulomb's solution 49
Coulomb, Charles A. viii xvii 48 154 223
Critical point 478
Curvature, beam 154 155
Curvature, beam, moment curvature relationship (MCR) 168—170
Deflection, beam 132 164—179
Deformable bodies principle of, virtual work for 512—515
Deformation 7 25—26
Deformation displacement relation (DDR) xi-xii
Deformation displacement relation (DDR), shafts (indeterminate) 373
Deformation displacement relation (DDR), trusses (determinate) and 85—87 92
Deformation displacement relation (DDR), trusses (indeterminate) and 268
Deformation, bar member 74
Deformation, energy 89—90
Deformation, force deformation relations (FDR) xi 92—93
Deformation, initial, in a determinate truss 96—97
Deformation, initial, in a indeterminate truss 270—272
Deformation, kinematics of 155—159
Deformation, shaft 224—233
Deformation, strain energy of total 500—503
Deformation, strain energy of total, complementary 503—504
Degree, temperature 4
Degree, used to measure angles 4
Degrees of freedom (dof), six displacement 42
delamination 204
density 29
Determinants 655
Determinate analysis, theory of xi-xii 104—112
Dialogues Concerning Two New Sciences (Galileo) xvii
Discretization 557 559 562
Displacement 1 7 25
Displacement method see "Stiffness method"
Displacement, bar member 72—73
Displacement, beams 132 164—183
Displacement, Castigliano's second theorem for calculating 93—96
Displacement, deformation displacement relation (DDR) 85—87 92
Displacement, energy principle determination of 89—91
Displacement, equilibrium equation expressed in 480 520—521
Displacement, graphical determination of 87—89
Displacement, nodal 85—96
Displacement, sign convention for 25
Displacement, small-displacement theory 38—40
Displacement, trusses (indeterminate) 274—275
Displacement, unit displacement theorem 526—528
Displacement, virtual 505—507
Dual integrated force method see "Integrated force method dual"
Ductility 29 35—36
Duhamel, Jean-Marie xvii
Eccentricity and approximation of force 12—14
Eigenvalue problem 655—657
Eigenvalue property 449
Eigenvector 449
Elastic curve 132 164
Elastic limit 34
Elastic region 32—33
Elasticity 1
Elasticity, modulus of see "Young's modulus"
Energy principle determination of displacement 89—91
Energy theorems, basic concepts, strain energy 498—499
Energy theorems, basic concepts, strain energy of total deformations 500—503
Energy theorems, basic concepts, strain energy of total deformations, complementary 503—504
Energy theorems, basic concepts, strain energy, complementary 499—500
Energy theorems, basic concepts, summary of 510
Energy theorems, basic concepts, virtual displacement 505—507
Energy theorems, basic concepts, virtual force 507—508
Energy theorems, basic concepts, virtual work 508—509
Energy theorems, basic concepts, virtual work, complementary 509
Energy theorems, basic concepts, work 504
Energy theorems, basic concepts, work, complementary 504—505
Energy theorems, Betti's theorem 541—544
Energy theorems, Castigliano's first theorem 523—526
Energy theorems, Castigliano's second theorem 93—96 537—539
Energy theorems, complementary energy, principle of 534—537
Energy theorems, Maxwell's reciprocal theorem 544—546
Energy theorems, minimum potential energy, principle of 515—523
Energy theorems, superposition, principle of 546—550 626—628
Energy theorems, unit displacement 526—528
Energy theorems, unit load 539—541
Energy theorems, virtual work, principle of 509 511—515
Energy theorems, virtual work, principle of complementary 528—534
Energy, strain 35 89—90
Energy, work-energy conservation theorem 91
Engesser, Friedrich xviii
Equilibrium equations (EE) xi
Equilibrium equations (EE) from potential energy function 521—523
Equilibrium equations (EE), bars, fixed 572—573
Equilibrium equations (EE), beams 315
Equilibrium equations (EE), column buckling and 479—481
Equilibrium equations (EE), development of 42
Equilibrium equations (EE), expressed in displacement 480 520—521
Equilibrium equations (EE), expressed in moment 480
Equilibrium equations (EE), frames 408
Equilibrium equations (EE), Navier's table problem 47—49 629—633
Equilibrium equations (EE), null property 273
Equilibrium equations (EE), shafts (indeterminate) 372—373
Equilibrium equations (EE), sign convention for 43 681—684
Equilibrium equations (EE), three-legged table problem 44—46
Equilibrium equations (EE), trusses (determinate) and 79—81
Equilibrium equations (EE), trusses (indeterminate) and 266—267
Equilibrium equations (EE), virtual force from 507—508
Equilibrium matrix 562 565
Equilibrium matrix for bar elements 565—567
Equilibrium matrix for rectangular membranes 569—570
Equilibrium matrix, beam 319
Equilibrium matrix, frame 408
Equilibrium matrix, notation 80—81
Equilibrium matrix, shaft 376
Equilibrium matrix, truss 267
Equilibrium, neutral 479
Equilibrium, stable 478—479
Equilibrium, unstable 479
Euler, Leonhard xvii 164
External load 1
External load, potential of 518—520
Factorization 652—654
Fahrenheit 4
Field equation ix
Finite element method, basic concepts 557—559
Finite element method, cantilevered beam example 586—592
Finite element method, dual integrated force method equations 561
Finite element method, fixed bar example 571—578
Finite element method, integrated force method equations 559—561
Finite element method, matrices 562—571
Finite element method, single-bay truss example 578—586
Finite element method, stiffness method equations 561
Finite elements 559
Flexibility matrix 329—337 562
Flexibility matrix for bar elements 567—568
Flexibility matrix for rectangular membranes 570
Flexibility matrix, bars, fixed 573
Flexibility matrix, beams (cantilevered) 589—590
Flexibility matrix, frame 412
Flexibility matrix, shaft 376
Flexure formula 153—159
Foople, August xviii
Foot (ft) 4
Force analysis of a composite bar 60—62
Force analysis of a octahedral bar 65—68
Force analysis of a tapered bar 63—65
Force deformation relation (FDR) xi
Force deformation relation (FDR), shafts (indeterminate) 373—374
Force deformation relation (FDR), trusses (determinate) and 92—93
Force deformation relation (FDR), trusses (indeterminate) and 269
Force method 555
Force(s), axial (normal) 7 10 18 20
Force(s), beam internal, analysis of 131—148 315—317
Force(s), converting measurements 7 9
Force(s), dimension of 4 8 7
Force(s), eccentricity and approximation 12—14
Force(s), integrated force method xiii 274
Ðåêëàìà