√лавна€    Ex Libris     ниги    ∆урналы    —татьи    —ерии     аталог    Wanted    «агрузка    ’удЋит    —правка    ѕоиск по индексам    ѕоиск    ‘орум   
blank
јвторизаци€

       
blank
ѕоиск по указател€м

blank
blank
blank
 расота
blank
Patnaik S., Hopkins D. Ч Strength of Materials: A New Unified Theory for the 21st Century
Patnaik S., Hopkins D. Ч Strength of Materials: A New Unified Theory for the 21st Century

„итать книгу
бесплатно

—качать книгу с нашего сайта нельз€

ќбсудите книгу на научном форуме



Ќашли опечатку?
¬ыделите ее мышкой и нажмите Ctrl+Enter


Ќазвание: Strength of Materials: A New Unified Theory for the 21st Century

јвторы: Patnaik S., Hopkins D.

јннотаци€:

Strength of materials is a common core course requirement in U.S. universities (and those elsewhere) for students majoring in civil, mechanical, aeronautical, naval, architectural, and other engineering disciplines. The subject trains a student to calculate the response of simple structures. This elementary course exposes the student to the fundamental concepts of solid mechanics in a simplified form. Comprehension of the principles becomes essential because this course lays the foundation for other advanced solid mechanics analyses. The usefulness of this subject cannot be overemphasized because strength of materials principles are routinely used in various engineering applications. We can even speculate that some of the concepts have been used for millennia by master builders such as the Romans, Chinese, South Asian, and many others who built cathedrals, bridges, ships, and other structural forms. A good engineer will benefit from a clear comprehension of the fundamental principles of strength of materials. Teaching this subject should not to be diluted even though computer codes are now available to solve problems.


язык: en

–убрика: “ехнологи€/

—татус предметного указател€: √отов указатель с номерами страниц

ed2k: ed2k stats

»здание: 1 edition

√од издани€: 2003

 оличество страниц: 750

ƒобавлена в каталог: 27.10.2010

ќперации: ѕоложить на полку | —копировать ссылку дл€ форума | —копировать ID
blank
ѕредметный указатель
Airy formulation      xv 556
Airy, George Biddel      xvii
Aluminum      28 685
American Society of Testing and Materials (ASTM)      31
Angle of twist      224
Angle of twist in composite shafts      232Ч233
Angle of twist, calculation of      615
Angle of twist, displacement      25
Angle of twist, relationship between strain and      224Ч225
Archimedes      42
Auxiliary structure, virtual force from      508
Axial (normal) force      7 10 687Ч688
Axial (normal) force, sign convention for      18 20
Axial displacement      25
Back-substitution      654Ч655
Bar elements, equilibrium matrix for      565Ч567
Bar elements, flexibility matrix for      567Ч568
Bar elements, stiffness matrix for      568Ч569
Bar member, truss      55Ч56
Bar member, truss, deformation      74
Bar member, truss, displacement      72Ч73
Bar member, truss, force analysis      57Ч59
Bar member, truss, force analysis of a composite bar      60Ч62
Bar member, truss, force analysis of a octahedral bar      65Ч68
Bar member, truss, force analysis of a tapered bar      63Ч65
Bar member, truss, free-body diagrams      58Ч59
Bar member, truss, interface forces      59
Bar member, truss, positive direction for forces      59
Bar member, truss, strain      74Ч75
Bar member, truss, stress      68Ч70
Bar(s)      2 3
Bar(s), composite      121Ч122
Bar(s), deformation      25
Bar(s), example of fixed      571Ч578
Bar(s), force in a truss      115Ч118
Bar(s), sketch for      23
Beam(s), axis of      7
Beam(s), column      245
Beam(s), deformation      25
Beam(s), dimensions of      10
Beam(s), formulas      690Ч701
Beam(s), members      3
Beam(s), sketch for      23
Beams, indeterminate, applications      311
Beams, indeterminate, clamped      317Ч328 548Ч549
Beams, indeterminate, equations used to analyze      311
Beams, indeterminate, examples of      312Ч314
Beams, indeterminate, flexibility matrix      329Ч337
Beams, indeterminate, integrated force method      317Ч328 345Ч350 355Ч360
Beams, indeterminate, internal forces in      315Ч317
Beams, indeterminate, mechanical load      318Ч328
Beams, indeterminate, propped cantilevered      345Ч351 697Ч699
Beams, indeterminate, redundant force for      605Ч612
Beams, indeterminate, redundant force for, supported by a tie rod      615Ч622
Beams, indeterminate, response variables      311
Beams, indeterminate, settling of support      335Ч337 343Ч344
Beams, indeterminate, stiffness method      337Ч355 360Ч366
Beams, indeterminate, strain energy      325
Beams, indeterminate, thermal load      333Ч334 341Ч342
Beams, indeterminate, three-span      352Ч366
Beams, simple, bending moment diagrams      131 134Ч152
Beams, simple, boundary conditions      132Ч134
Beams, simple, built-up, and interface shear force      197Ч202
Beams, simple, cantilevered      39Ч40 129 130 586Ч592 624Ч625 690Ч693
Beams, simple, composite      202Ч209
Beams, simple, coordinate axes      120Ч130
Beams, simple, curvature      154 155
Beams, simple, displacement/deflection      132 164Ч179
Beams, simple, examples of      129 130
Beams, simple, fixed      699Ч701
Beams, simple, flexure formula      153Ч159
Beams, simple, internal forces, analysis of      131Ч148
Beams, simple, neutral plane      130Ч131 154
Beams, simple, relationships between bending moment, shear force, and load      149Ч152
Beams, simple, settling of supports      183Ч184
Beams, simple, shear center      184Ч197
Beams, simple, shear force diagrams      134Ч148
Beams, simple, shear stress formula      159Ч164
Beams, simple, simply supported      129 130 546Ч548 625Ч626 693Ч697
Beams, simple, strain, calculating      165Ч170
Beams, simple, thermal displacement in      179Ч183
Beltrami, Eugenio      xvii
Bending moment      11 15Ч16 689
Bending moment, beam      131 134Ч152
Bending moment, sign convention for      18 21
Bernoulli's formula      49
Bernoulli, Jacob      xvii 32 48 154 164
Bernoulli, Johan      xvii
Betti's theorem      541Ч544
Bifurcation point      477Ч478
Boundary compatibility condition (BCC)      ix-x
boundary conditions      ix 132Ч134
Boussinesq, Joseph      xvii
Brahe, Tyco      42
Buckling, equation      481Ч487 see
Buckling, parameter      481 see
Buckling, point      477 see
Built-up beams and interface shear force      197Ч202
Cantilevered beams      39Ч40 129 130 586Ч592 624Ч625 690Ч693
Cantilevered beams, propped      345Ч351 697Ч699
Cantilevered shafts      218 219
Castigliano's first theorem      523Ч526
Castigliano's second theorem      93Ч96 537Ч539
Castigliano, Alberto      xvii
Cauchy, Augustin      ix xvii
Celsius      4
Centroid      660
Channel section      184
Choleski method      652Ч655
Circular shafts, power transmission and      233Ч236
Clapeyron, Emile      xvii
Clebsch, Alfred      xvii
Coefficient of linear expansion      29Ч30
Column buckling, effective length of column      487Ч488
Column buckling, equilibrium      478Ч479
Column buckling, equilibrium equations      479Ч481
Column buckling, features of      475Ч478
Column buckling, secant formula      488Ч492
Column buckling, solution of buckling equation      481Ч487
Columns, clamped      483Ч485 487Ч488
Columns, clamped-free      487Ч488
Columns, clamped-pinned      485Ч488
Columns, simply supported      481Ч483 487Ч488
Compatibility condition (CC)      ix x xii
Compatibility condition (CC), bars, fixed      573Ч575
Compatibility condition (CC), beams      317
Compatibility condition (CC), finite element method      557
Compatibility condition (CC), frame      405
Compatibility condition (CC), null property      273
Compatibility condition (CC), shafts (indeterminate)      375Ч376
Compatibility condition (CC), trusses (indeterminate)      269Ч270
Compatibility condition (CC), trusses (single-bay)      582Ч584
Compatibility matrix      xiii 562
Compatibility matrix, beams (cantilevered)      588Ч589
Compatibility matrix, frame      412
Compatibility matrix, shaft      376
Complementary energy, principle of      534Ч537
Complementary strain energy      499Ч500
Complementary strain energy of total deformations      503Ч504
Complementary virtual work, concept      509
Complementary virtual work, principle of      528Ч534
Complementary work      504Ч505
Completed Beltrami-Michell formulation (CBMF)      xv xvii 555 556
Composite bars, force analysis of a      60Ч62 121Ч122
Composite beams      202Ч209
Composite shafts, angle of twist in      232Ч233
Compression      475
Computer code      703Ч715
Concrete      203
Conjugate beam concept      622Ч626
Coulomb's solution      49
Coulomb, Charles A.      viii xvii 48 154 223
Critical point      478
Curvature, beam      154 155
Curvature, beam, moment curvature relationship (MCR)      168Ч170
Deflection, beam      132 164Ч179
Deformable bodies principle of, virtual work for      512Ч515
Deformation      7 25Ч26
Deformation displacement relation (DDR)      xi-xii
Deformation displacement relation (DDR), shafts (indeterminate)      373
Deformation displacement relation (DDR), trusses (determinate) and      85Ч87 92
Deformation displacement relation (DDR), trusses (indeterminate) and      268
Deformation, bar member      74
Deformation, energy      89Ч90
Deformation, force deformation relations (FDR)      xi 92Ч93
Deformation, initial, in a determinate truss      96Ч97
Deformation, initial, in a indeterminate truss      270Ч272
Deformation, kinematics of      155Ч159
Deformation, shaft      224Ч233
Deformation, strain energy of total      500Ч503
Deformation, strain energy of total, complementary      503Ч504
Degree, temperature      4
Degree, used to measure angles      4
Degrees of freedom (dof), six displacement      42
delamination      204
density      29
Determinants      655
Determinate analysis, theory of      xi-xii 104Ч112
Dialogues Concerning Two New Sciences (Galileo)      xvii
Discretization      557 559 562
Displacement      1 7 25
Displacement method      see "Stiffness method"
Displacement, bar member      72Ч73
Displacement, beams      132 164Ч183
Displacement, Castigliano's second theorem for calculating      93Ч96
Displacement, deformation displacement relation (DDR)      85Ч87 92
Displacement, energy principle determination of      89Ч91
Displacement, equilibrium equation expressed in      480 520Ч521
Displacement, graphical determination of      87Ч89
Displacement, nodal      85Ч96
Displacement, sign convention for      25
Displacement, small-displacement theory      38Ч40
Displacement, trusses (indeterminate)      274Ч275
Displacement, unit displacement theorem      526Ч528
Displacement, virtual      505Ч507
Dual integrated force method      see "Integrated force method dual"
Ductility      29 35Ч36
Duhamel, Jean-Marie      xvii
Eccentricity and approximation of force      12Ч14
Eigenvalue problem      655Ч657
Eigenvalue property      449
Eigenvector      449
Elastic curve      132 164
Elastic limit      34
Elastic region      32Ч33
Elasticity      1
Elasticity, modulus of      see "Young's modulus"
Energy principle determination of displacement      89Ч91
Energy theorems, basic concepts, strain energy      498Ч499
Energy theorems, basic concepts, strain energy of total deformations      500Ч503
Energy theorems, basic concepts, strain energy of total deformations, complementary      503Ч504
Energy theorems, basic concepts, strain energy, complementary      499Ч500
Energy theorems, basic concepts, summary of      510
Energy theorems, basic concepts, virtual displacement      505Ч507
Energy theorems, basic concepts, virtual force      507Ч508
Energy theorems, basic concepts, virtual work      508Ч509
Energy theorems, basic concepts, virtual work, complementary      509
Energy theorems, basic concepts, work      504
Energy theorems, basic concepts, work, complementary      504Ч505
Energy theorems, Betti's theorem      541Ч544
Energy theorems, Castigliano's first theorem      523Ч526
Energy theorems, Castigliano's second theorem      93Ч96 537Ч539
Energy theorems, complementary energy, principle of      534Ч537
Energy theorems, Maxwell's reciprocal theorem      544Ч546
Energy theorems, minimum potential energy, principle of      515Ч523
Energy theorems, superposition, principle of      546Ч550 626Ч628
Energy theorems, unit displacement      526Ч528
Energy theorems, unit load      539Ч541
Energy theorems, virtual work, principle of      509 511Ч515
Energy theorems, virtual work, principle of complementary      528Ч534
Energy, strain      35 89Ч90
Energy, work-energy conservation theorem      91
Engesser, Friedrich      xviii
Equilibrium equations (EE)      xi
Equilibrium equations (EE) from potential energy function      521Ч523
Equilibrium equations (EE), bars, fixed      572Ч573
Equilibrium equations (EE), beams      315
Equilibrium equations (EE), column buckling and      479Ч481
Equilibrium equations (EE), development of      42
Equilibrium equations (EE), expressed in displacement      480 520Ч521
Equilibrium equations (EE), expressed in moment      480
Equilibrium equations (EE), frames      408
Equilibrium equations (EE), Navier's table problem      47Ч49 629Ч633
Equilibrium equations (EE), null property      273
Equilibrium equations (EE), shafts (indeterminate)      372Ч373
Equilibrium equations (EE), sign convention for      43 681Ч684
Equilibrium equations (EE), three-legged table problem      44Ч46
Equilibrium equations (EE), trusses (determinate) and      79Ч81
Equilibrium equations (EE), trusses (indeterminate) and      266Ч267
Equilibrium equations (EE), virtual force from      507Ч508
Equilibrium matrix      562 565
Equilibrium matrix for bar elements      565Ч567
Equilibrium matrix for rectangular membranes      569Ч570
Equilibrium matrix, beam      319
Equilibrium matrix, frame      408
Equilibrium matrix, notation      80Ч81
Equilibrium matrix, shaft      376
Equilibrium matrix, truss      267
Equilibrium, neutral      479
Equilibrium, stable      478Ч479
Equilibrium, unstable      479
Euler, Leonhard      xvii 164
External load      1
External load, potential of      518Ч520
Factorization      652Ч654
Fahrenheit      4
Field equation      ix
Finite element method, basic concepts      557Ч559
Finite element method, cantilevered beam example      586Ч592
Finite element method, dual integrated force method equations      561
Finite element method, fixed bar example      571Ч578
Finite element method, integrated force method equations      559Ч561
Finite element method, matrices      562Ч571
Finite element method, single-bay truss example      578Ч586
Finite element method, stiffness method equations      561
Finite elements      559
Flexibility matrix      329Ч337 562
Flexibility matrix for bar elements      567Ч568
Flexibility matrix for rectangular membranes      570
Flexibility matrix, bars, fixed      573
Flexibility matrix, beams (cantilevered)      589Ч590
Flexibility matrix, frame      412
Flexibility matrix, shaft      376
Flexure formula      153Ч159
Foople, August      xviii
Foot (ft)      4
Force analysis of a composite bar      60Ч62
Force analysis of a octahedral bar      65Ч68
Force analysis of a tapered bar      63Ч65
Force deformation relation (FDR)      xi
Force deformation relation (FDR), shafts (indeterminate)      373Ч374
Force deformation relation (FDR), trusses (determinate) and      92Ч93
Force deformation relation (FDR), trusses (indeterminate) and      269
Force method      555
Force(s), axial (normal)      7 10 18 20
Force(s), beam internal, analysis of      131Ч148 315Ч317
Force(s), converting measurements      7 9
Force(s), dimension of      4 8 7
Force(s), eccentricity and approximation      12Ч14
Force(s), integrated force method      xiii 274
1 2 3
blank
–еклама
blank
blank
HR
@Mail.ru
       © Ёлектронна€ библиотека попечительского совета мехмата ћ√”, 2004-2019
Ёлектронна€ библиотека мехмата ћ√” | Valid HTML 4.01! | Valid CSS! ќ проекте