Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century
Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Strength of Materials: A New Unified Theory for the 21st Century

Àâòîðû: Patnaik S., Hopkins D.

Àííîòàöèÿ:

Strength of materials is a common core course requirement in U.S. universities (and those elsewhere) for students majoring in civil, mechanical, aeronautical, naval, architectural, and other engineering disciplines. The subject trains a student to calculate the response of simple structures. This elementary course exposes the student to the fundamental concepts of solid mechanics in a simplified form. Comprehension of the principles becomes essential because this course lays the foundation for other advanced solid mechanics analyses. The usefulness of this subject cannot be overemphasized because strength of materials principles are routinely used in various engineering applications. We can even speculate that some of the concepts have been used for millennia by master builders such as the Romans, Chinese, South Asian, and many others who built cathedrals, bridges, ships, and other structural forms. A good engineer will benefit from a clear comprehension of the fundamental principles of strength of materials. Teaching this subject should not to be diluted even though computer codes are now available to solve problems.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1 edition

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 750

Äîáàâëåíà â êàòàëîã: 27.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Airy formulation      xv 556
Airy, George Biddel      xvii
Aluminum      28 685
American Society of Testing and Materials (ASTM)      31
Angle of twist      224
Angle of twist in composite shafts      232—233
Angle of twist, calculation of      615
Angle of twist, displacement      25
Angle of twist, relationship between strain and      224—225
Archimedes      42
Auxiliary structure, virtual force from      508
Axial (normal) force      7 10 687—688
Axial (normal) force, sign convention for      18 20
Axial displacement      25
Back-substitution      654—655
Bar elements, equilibrium matrix for      565—567
Bar elements, flexibility matrix for      567—568
Bar elements, stiffness matrix for      568—569
Bar member, truss      55—56
Bar member, truss, deformation      74
Bar member, truss, displacement      72—73
Bar member, truss, force analysis      57—59
Bar member, truss, force analysis of a composite bar      60—62
Bar member, truss, force analysis of a octahedral bar      65—68
Bar member, truss, force analysis of a tapered bar      63—65
Bar member, truss, free-body diagrams      58—59
Bar member, truss, interface forces      59
Bar member, truss, positive direction for forces      59
Bar member, truss, strain      74—75
Bar member, truss, stress      68—70
Bar(s)      2 3
Bar(s), composite      121—122
Bar(s), deformation      25
Bar(s), example of fixed      571—578
Bar(s), force in a truss      115—118
Bar(s), sketch for      23
Beam(s), axis of      7
Beam(s), column      245
Beam(s), deformation      25
Beam(s), dimensions of      10
Beam(s), formulas      690—701
Beam(s), members      3
Beam(s), sketch for      23
Beams, indeterminate, applications      311
Beams, indeterminate, clamped      317—328 548—549
Beams, indeterminate, equations used to analyze      311
Beams, indeterminate, examples of      312—314
Beams, indeterminate, flexibility matrix      329—337
Beams, indeterminate, integrated force method      317—328 345—350 355—360
Beams, indeterminate, internal forces in      315—317
Beams, indeterminate, mechanical load      318—328
Beams, indeterminate, propped cantilevered      345—351 697—699
Beams, indeterminate, redundant force for      605—612
Beams, indeterminate, redundant force for, supported by a tie rod      615—622
Beams, indeterminate, response variables      311
Beams, indeterminate, settling of support      335—337 343—344
Beams, indeterminate, stiffness method      337—355 360—366
Beams, indeterminate, strain energy      325
Beams, indeterminate, thermal load      333—334 341—342
Beams, indeterminate, three-span      352—366
Beams, simple, bending moment diagrams      131 134—152
Beams, simple, boundary conditions      132—134
Beams, simple, built-up, and interface shear force      197—202
Beams, simple, cantilevered      39—40 129 130 586—592 624—625 690—693
Beams, simple, composite      202—209
Beams, simple, coordinate axes      120—130
Beams, simple, curvature      154 155
Beams, simple, displacement/deflection      132 164—179
Beams, simple, examples of      129 130
Beams, simple, fixed      699—701
Beams, simple, flexure formula      153—159
Beams, simple, internal forces, analysis of      131—148
Beams, simple, neutral plane      130—131 154
Beams, simple, relationships between bending moment, shear force, and load      149—152
Beams, simple, settling of supports      183—184
Beams, simple, shear center      184—197
Beams, simple, shear force diagrams      134—148
Beams, simple, shear stress formula      159—164
Beams, simple, simply supported      129 130 546—548 625—626 693—697
Beams, simple, strain, calculating      165—170
Beams, simple, thermal displacement in      179—183
Beltrami, Eugenio      xvii
Bending moment      11 15—16 689
Bending moment, beam      131 134—152
Bending moment, sign convention for      18 21
Bernoulli's formula      49
Bernoulli, Jacob      xvii 32 48 154 164
Bernoulli, Johan      xvii
Betti's theorem      541—544
Bifurcation point      477—478
Boundary compatibility condition (BCC)      ix-x
boundary conditions      ix 132—134
Boussinesq, Joseph      xvii
Brahe, Tyco      42
Buckling, equation      481—487 see
Buckling, parameter      481 see
Buckling, point      477 see
Built-up beams and interface shear force      197—202
Cantilevered beams      39—40 129 130 586—592 624—625 690—693
Cantilevered beams, propped      345—351 697—699
Cantilevered shafts      218 219
Castigliano's first theorem      523—526
Castigliano's second theorem      93—96 537—539
Castigliano, Alberto      xvii
Cauchy, Augustin      ix xvii
Celsius      4
Centroid      660
Channel section      184
Choleski method      652—655
Circular shafts, power transmission and      233—236
Clapeyron, Emile      xvii
Clebsch, Alfred      xvii
Coefficient of linear expansion      29—30
Column buckling, effective length of column      487—488
Column buckling, equilibrium      478—479
Column buckling, equilibrium equations      479—481
Column buckling, features of      475—478
Column buckling, secant formula      488—492
Column buckling, solution of buckling equation      481—487
Columns, clamped      483—485 487—488
Columns, clamped-free      487—488
Columns, clamped-pinned      485—488
Columns, simply supported      481—483 487—488
Compatibility condition (CC)      ix x xii
Compatibility condition (CC), bars, fixed      573—575
Compatibility condition (CC), beams      317
Compatibility condition (CC), finite element method      557
Compatibility condition (CC), frame      405
Compatibility condition (CC), null property      273
Compatibility condition (CC), shafts (indeterminate)      375—376
Compatibility condition (CC), trusses (indeterminate)      269—270
Compatibility condition (CC), trusses (single-bay)      582—584
Compatibility matrix      xiii 562
Compatibility matrix, beams (cantilevered)      588—589
Compatibility matrix, frame      412
Compatibility matrix, shaft      376
Complementary energy, principle of      534—537
Complementary strain energy      499—500
Complementary strain energy of total deformations      503—504
Complementary virtual work, concept      509
Complementary virtual work, principle of      528—534
Complementary work      504—505
Completed Beltrami-Michell formulation (CBMF)      xv xvii 555 556
Composite bars, force analysis of a      60—62 121—122
Composite beams      202—209
Composite shafts, angle of twist in      232—233
Compression      475
Computer code      703—715
Concrete      203
Conjugate beam concept      622—626
Coulomb's solution      49
Coulomb, Charles A.      viii xvii 48 154 223
Critical point      478
Curvature, beam      154 155
Curvature, beam, moment curvature relationship (MCR)      168—170
Deflection, beam      132 164—179
Deformable bodies principle of, virtual work for      512—515
Deformation      7 25—26
Deformation displacement relation (DDR)      xi-xii
Deformation displacement relation (DDR), shafts (indeterminate)      373
Deformation displacement relation (DDR), trusses (determinate) and      85—87 92
Deformation displacement relation (DDR), trusses (indeterminate) and      268
Deformation, bar member      74
Deformation, energy      89—90
Deformation, force deformation relations (FDR)      xi 92—93
Deformation, initial, in a determinate truss      96—97
Deformation, initial, in a indeterminate truss      270—272
Deformation, kinematics of      155—159
Deformation, shaft      224—233
Deformation, strain energy of total      500—503
Deformation, strain energy of total, complementary      503—504
Degree, temperature      4
Degree, used to measure angles      4
Degrees of freedom (dof), six displacement      42
delamination      204
density      29
Determinants      655
Determinate analysis, theory of      xi-xii 104—112
Dialogues Concerning Two New Sciences (Galileo)      xvii
Discretization      557 559 562
Displacement      1 7 25
Displacement method      see "Stiffness method"
Displacement, bar member      72—73
Displacement, beams      132 164—183
Displacement, Castigliano's second theorem for calculating      93—96
Displacement, deformation displacement relation (DDR)      85—87 92
Displacement, energy principle determination of      89—91
Displacement, equilibrium equation expressed in      480 520—521
Displacement, graphical determination of      87—89
Displacement, nodal      85—96
Displacement, sign convention for      25
Displacement, small-displacement theory      38—40
Displacement, trusses (indeterminate)      274—275
Displacement, unit displacement theorem      526—528
Displacement, virtual      505—507
Dual integrated force method      see "Integrated force method dual"
Ductility      29 35—36
Duhamel, Jean-Marie      xvii
Eccentricity and approximation of force      12—14
Eigenvalue problem      655—657
Eigenvalue property      449
Eigenvector      449
Elastic curve      132 164
Elastic limit      34
Elastic region      32—33
Elasticity      1
Elasticity, modulus of      see "Young's modulus"
Energy principle determination of displacement      89—91
Energy theorems, basic concepts, strain energy      498—499
Energy theorems, basic concepts, strain energy of total deformations      500—503
Energy theorems, basic concepts, strain energy of total deformations, complementary      503—504
Energy theorems, basic concepts, strain energy, complementary      499—500
Energy theorems, basic concepts, summary of      510
Energy theorems, basic concepts, virtual displacement      505—507
Energy theorems, basic concepts, virtual force      507—508
Energy theorems, basic concepts, virtual work      508—509
Energy theorems, basic concepts, virtual work, complementary      509
Energy theorems, basic concepts, work      504
Energy theorems, basic concepts, work, complementary      504—505
Energy theorems, Betti's theorem      541—544
Energy theorems, Castigliano's first theorem      523—526
Energy theorems, Castigliano's second theorem      93—96 537—539
Energy theorems, complementary energy, principle of      534—537
Energy theorems, Maxwell's reciprocal theorem      544—546
Energy theorems, minimum potential energy, principle of      515—523
Energy theorems, superposition, principle of      546—550 626—628
Energy theorems, unit displacement      526—528
Energy theorems, unit load      539—541
Energy theorems, virtual work, principle of      509 511—515
Energy theorems, virtual work, principle of complementary      528—534
Energy, strain      35 89—90
Energy, work-energy conservation theorem      91
Engesser, Friedrich      xviii
Equilibrium equations (EE)      xi
Equilibrium equations (EE) from potential energy function      521—523
Equilibrium equations (EE), bars, fixed      572—573
Equilibrium equations (EE), beams      315
Equilibrium equations (EE), column buckling and      479—481
Equilibrium equations (EE), development of      42
Equilibrium equations (EE), expressed in displacement      480 520—521
Equilibrium equations (EE), expressed in moment      480
Equilibrium equations (EE), frames      408
Equilibrium equations (EE), Navier's table problem      47—49 629—633
Equilibrium equations (EE), null property      273
Equilibrium equations (EE), shafts (indeterminate)      372—373
Equilibrium equations (EE), sign convention for      43 681—684
Equilibrium equations (EE), three-legged table problem      44—46
Equilibrium equations (EE), trusses (determinate) and      79—81
Equilibrium equations (EE), trusses (indeterminate) and      266—267
Equilibrium equations (EE), virtual force from      507—508
Equilibrium matrix      562 565
Equilibrium matrix for bar elements      565—567
Equilibrium matrix for rectangular membranes      569—570
Equilibrium matrix, beam      319
Equilibrium matrix, frame      408
Equilibrium matrix, notation      80—81
Equilibrium matrix, shaft      376
Equilibrium matrix, truss      267
Equilibrium, neutral      479
Equilibrium, stable      478—479
Equilibrium, unstable      479
Euler, Leonhard      xvii 164
External load      1
External load, potential of      518—520
Factorization      652—654
Fahrenheit      4
Field equation      ix
Finite element method, basic concepts      557—559
Finite element method, cantilevered beam example      586—592
Finite element method, dual integrated force method equations      561
Finite element method, fixed bar example      571—578
Finite element method, integrated force method equations      559—561
Finite element method, matrices      562—571
Finite element method, single-bay truss example      578—586
Finite element method, stiffness method equations      561
Finite elements      559
Flexibility matrix      329—337 562
Flexibility matrix for bar elements      567—568
Flexibility matrix for rectangular membranes      570
Flexibility matrix, bars, fixed      573
Flexibility matrix, beams (cantilevered)      589—590
Flexibility matrix, frame      412
Flexibility matrix, shaft      376
Flexure formula      153—159
Foople, August      xviii
Foot (ft)      4
Force analysis of a composite bar      60—62
Force analysis of a octahedral bar      65—68
Force analysis of a tapered bar      63—65
Force deformation relation (FDR)      xi
Force deformation relation (FDR), shafts (indeterminate)      373—374
Force deformation relation (FDR), trusses (determinate) and      92—93
Force deformation relation (FDR), trusses (indeterminate) and      269
Force method      555
Force(s), axial (normal)      7 10 18 20
Force(s), beam internal, analysis of      131—148 315—317
Force(s), converting measurements      7 9
Force(s), dimension of      4 8 7
Force(s), eccentricity and approximation      12—14
Force(s), integrated force method      xiii 274
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå