Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century
Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Strength of Materials: A New Unified Theory for the 21st Century

Àâòîðû: Patnaik S., Hopkins D.

Àííîòàöèÿ:

Strength of materials is a common core course requirement in U.S. universities (and those elsewhere) for students majoring in civil, mechanical, aeronautical, naval, architectural, and other engineering disciplines. The subject trains a student to calculate the response of simple structures. This elementary course exposes the student to the fundamental concepts of solid mechanics in a simplified form. Comprehension of the principles becomes essential because this course lays the foundation for other advanced solid mechanics analyses. The usefulness of this subject cannot be overemphasized because strength of materials principles are routinely used in various engineering applications. We can even speculate that some of the concepts have been used for millennia by master builders such as the Romans, Chinese, South Asian, and many others who built cathedrals, bridges, ships, and other structural forms. A good engineer will benefit from a clear comprehension of the fundamental principles of strength of materials. Teaching this subject should not to be diluted even though computer codes are now available to solve problems.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1 edition

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 750

Äîáàâëåíà â êàòàëîã: 27.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Strain, ratio of stress and      33
Strain, relationship between angle of twist and      224—225
Strain, sign convention for      27
Strength of materials, assumptions of      37—40
Strength of materials, defined      1
Strength of materials, historical development      xvii-xix
Strength of materials, list of scientists who contributed to      xviii
Strength of materials, structures and members      2—3
Strength of materials, terminology      2
Stress      7
Stress in a plane      442—445 453—456
Stress in a plate      441—442
Stress in bar member      68—70
Stress in octahedral bar      70—72
Stress in pressure vessels      463
Stress in pressure vessels (cylindrical)      466—470
Stress in pressure vessels (spherical)      463—465
Stress, beam      158
Stress, formulation      ix 687
Stress, fracture      35
Stress, frame      245
Stress, measuring      31
Stress, normal versus shear      26—27 68
Stress, principal      448—453 456—462
Stress, ratio of, and strain      33
Stress, shaft      222
Stress, sign convention for      26
Stress, transformation rule      445—448
Stress-strain diagram      32 33
Stress-strain relation, buckling and      475
Structural axis      7 10
Superposition, principle of      546—550 626—628
Support settling      see "Settling of support"
System of units      4—6 677—680
Tapered bar, force analysis of a      63—65
Temperature, beam deformation due to changes in      179—183
Temperature, converting from one scale to another      30
Tension test      31
Tensor (t) sign convention      15 17—23 26—27
Tensor transformation rule      445—448
Test coupon      31
Theory of structures      1
Thermal displacement in beams      179—183
Thermal effect in a beam      329—330
Thermal effect in a truss      99—101
Thermal load      1
Thermal load, beams (indeterminate)      333—334 341—342
Thermal load, first      301—302
Thermal load, frame (indeterminate)      425—431
Thermal load, second      302—303
Thermal load, stiffness method for      300 341—342
Thermal load, trusses (indeterminate)      271—272 279—281 293—294
Three-legged table problem      44—46
Timoshenko, S.P.      xviii
torque      12
Torque, deformation      25
Torque, formula      222—224 225 690
Torque, shafts and analysis of internal      218—222
Torque, sign convention for external      16 18
Torque, sign convention for internal      19—20 21
Torsion formula      222—224 225
Total formulation      xiv xv 556
Transverse displacement      25
Transverse force      see "Shear force"
Trusses, determinate, applications for      55
Trusses, determinate, bar force in      115—118
Trusses, determinate, bar member      55—65
Trusses, determinate, bar member deformation      74
Trusses, determinate, bar member displacement      72—73
Trusses, determinate, bar member strain      74—75
Trusses, determinate, bar member stress      68—70
Trusses, determinate, composite bar      121—122
Trusses, determinate, defined      1
Trusses, determinate, defining and solving a truss problem      76—85
Trusses, determinate, determinate analysis, theory of      104—112
Trusses, determinate, external versus internal      113
Trusses, determinate, initial deformation      96—97
Trusses, determinate, net area of angle section      118—119
Trusses, determinate, nodal displacement      85—96
Trusses, determinate, settling of support      101—104
Trusses, determinate, thermal effect      99—101
Trusses, determinate, two-dimensional      113—120
Trusses, five-bar example, bar deformation      85
Trusses, five-bar example, bar strain      84—85
Trusses, five-bar example, bar stress      84
Trusses, five-bar example, coordinates of nodes      76 77
Trusses, five-bar example, deformation displacement relation      85—87 92
Trusses, five-bar example, determinate analysis, theory of      104—105 110—112
Trusses, five-bar example, equilibrium equations      79—81
Trusses, five-bar example, equilibrium of reaction and load      83—84
Trusses, five-bar example, force deformation relation      92—93
Trusses, five-bar example, loads, external      78—79
Trusses, five-bar example, member properties      77—78
Trusses, five-bar example, reactions calculated      82—83
Trusses, five-bar example, support conditions      76
Trusses, indeterminate, advantages of, over determinate trusses      263
Trusses, indeterminate, compatibility conditions      269—270
Trusses, indeterminate, deformation displacement relation      268
Trusses, indeterminate, displacement      274—275
Trusses, indeterminate, equations used to analyze      263
Trusses, indeterminate, equilibrium equations      266—267
Trusses, indeterminate, examples of      263—266
Trusses, indeterminate, force deformation relation      269
Trusses, indeterminate, initial deformation      270—272
Trusses, indeterminate, integrated force method      274 275—289
Trusses, indeterminate, integrated force method, dual      274—275 289—296
Trusses, indeterminate, mechanical load      271 276—279 291 293 339—341
Trusses, indeterminate, null property      273
Trusses, indeterminate, response variables      273
Trusses, indeterminate, settling of support      270—272 303—305
Trusses, indeterminate, stiffness method      274—275 296—300 303—305
Trusses, indeterminate, thermal load      271—272 279—281 293—294 341—342
Trusses, nine-bar, six-node example      106—110
Trusses, single-bay      578—586
Trusses, three-bar      515—518 549—550
Two-dimensional structures, examples of      441
Two-dimensional structures, Mohr's circle for plane stress      453—456
Two-dimensional structures, principal stress      448—453
Two-dimensional structures, principal stress, properties      456—462
Two-dimensional structures, stress in cylindrical pressure vessels      466—470
Two-dimensional structures, stress in pressure vessels      463
Two-dimensional structures, stress in spherical pressure vessels      463—465
Two-dimensional structures, stress state (plane)      442—445
Two-dimensional structures, stress state (plate)      441—442
Two-dimensional structures, stress transformation rule      445—448
Two-dimensional trusses      113—120
U.S. Customary System (USCS), base units      4
U.S. Customary System (USCS), converting to SI      8 9
Unit displacement theorem      526—528
Unit load theorem      539—541
Variables      see "Response variables"
Vector      25
Virtual displacement      505—507
Virtual force      507—508
Virtual work, basic concept      508—509
Virtual work, complementary concept      509
Virtual work, complementary, principle of      528—534
Virtual work, principle of      509 511—515
Voigt, Woldemar      xviii
Volume      29
Washizu method      556
Weight density      29
Whipple, Squire      xvii
Williot, J.V.      87
Winkler, Emile      xvii
Wood      204
Work      90—91 504
Work, complementary      504—505
Work, energy conservation theorem      91
Work, virtual, basic concept      508—509
Work, virtual, complementary      509
Work, virtual, principle of      509 511—515
Work, virtual, principle of complementary      528—534
Yield point      34
Yield stress      34
Yielding zone      34—35
Young's modulus      29 33
Young, Thomas      xvii
Zhuravskii, D.I.      see "Jourawski D.J."
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå