Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century
Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Strength of Materials: A New Unified Theory for the 21st Century

Àâòîðû: Patnaik S., Hopkins D.

Àííîòàöèÿ:

Strength of materials is a common core course requirement in U.S. universities (and those elsewhere) for students majoring in civil, mechanical, aeronautical, naval, architectural, and other engineering disciplines. The subject trains a student to calculate the response of simple structures. This elementary course exposes the student to the fundamental concepts of solid mechanics in a simplified form. Comprehension of the principles becomes essential because this course lays the foundation for other advanced solid mechanics analyses. The usefulness of this subject cannot be overemphasized because strength of materials principles are routinely used in various engineering applications. We can even speculate that some of the concepts have been used for millennia by master builders such as the Romans, Chinese, South Asian, and many others who built cathedrals, bridges, ships, and other structural forms. A good engineer will benefit from a clear comprehension of the fundamental principles of strength of materials. Teaching this subject should not to be diluted even though computer codes are now available to solve problems.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1 edition

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 750

Äîáàâëåíà â êàòàëîã: 27.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Force(s), interface      59
Force(s), redundant force method      xiv
Force(s), shear (transverse)      7 11 18—19 21 134—152
Force(s), trusses (determinate)      274
Force(s), virtual      507—508
Fracture stress      35
Frame member      3 20 21
Frame member, deformation      25—26
Frame member, sketch for      23
Frames, indeterminate, integrated force method      407—420 427—429 431—434
Frames, indeterminate, portal, with mechanical load      405—406
Frames, indeterminate, portal, with thermal load      425—431
Frames, indeterminate, settling for support      431—436
Frames, indeterminate, stiffness method      421—425 429—431
Frames, simple, Galileo's problem      256—259
Frames, simple, L-Joint      250—253
Frames, simple, leaning column      254—256
Frames, simple, support      239—245
Free-body diagrams      58—59
Galileo      xvii 2 48 49 129 154
Galileo, cantilever experiment      vii-viii
Galileo, strength and resistance problem      256—259
Gallagher, Richard H.      xix
Gauge length      31
Geometrical linearity      38—40
Graphical determination of displacement      87—89
Gravity, acceleration      8
Greene, Charles      xvii
Hogging moment      19
Hooke's law      30—31 33 166—167
Hooke, Robert      viii xvii 30
Horsepower      233
Hybrid method      xiv xv 556
I-section      184
Indeterminate analysis      xii-xiii
Initial deformation in a determinate truss      96—97
Initial deformation in a indeterminate truss      270—272
Integrated force method (IFM)      xiii
Integrated force method (IFM), bars, fixed      571—572
Integrated force method (IFM), beams (cantilevered)      587—588
Integrated force method (IFM), beams (indeterminate)      317—328
Integrated force method (IFM), beams (propped cantilevered)      345—350
Integrated force method (IFM), beams (supported by tie rods)      615—622
Integrated force method (IFM), beams (three-span)      355—360
Integrated force method (IFM), design model      407
Integrated force method (IFM), equations      559—561
Integrated force method (IFM), frames (indeterminate)      407—420 427—429 431—434
Integrated force method (IFM), reaction model      407
Integrated force method (IFM), shafts (indeterminate)      376—379
Integrated force method (IFM), standard model      407—420
Integrated force method (IFM), stress calculation      591
Integrated force method (IFM), trusses (indeterminate)      274 275—289
Integrated force method (IFM), trusses (single-bay)      579—581
Integrated force method, dual (IFMD)      274—275 289—296
Integrated force method, dual (IFMD), bars, fixed      575—577
Integrated force method, dual (IFMD), beams (cantilevered)      590—591
Integrated force method, dual (IFMD), compatibility matrix      561
Integrated force method, dual (IFMD), equations      561
Integrated force method, dual (IFMD), trusses (single-bay)      584—586
Interface forces      59
Interface forces, shear force and built-up beams      197—202
Internal forces of beams, analysis of      131—148m 315—317
Internal torque, shafts and      218—222
International system of units      see "SI"
Jourawski, D.J.      xvii
Kelvin (K)      4
Kepler, J.      42
Kilogram (kg)      4
Kirchhoff, Gustav Robert      xvii
L-frame      246—250
L-frames, simple      246—250
L-Joint      250—253
Lagrange, Joseph-Louis      xvii
Lame, Gabriel      xvii
Latural contraction      33
Leaning column      254—256
Leonardo da Vinci      xvii 42
Levy, Maurice      xix
Line of action      7
Linearity, geometrical      38—40
Linearity, material      38
Load      see also "Mechanical load" "Thermal
Load, external      1 518—520
Load, relationships between bending moment, shear force, and      149—152
Load, sign conventions for      15 16
Load, unit load theorem      539—541
Load-carrying capacity      16
Love, A.E.H.      xviii
mass density      29
Material linearity      38
Material properties      28
Material properties, Brittle      35
Material properties, coefficient of linear expansion      29—30
Material properties, density      29
Material properties, ductility      29 35—36
Material properties, elastic      28
Material properties, flexure formula      154
Material properties, isotropic      28
Material properties, Poisson's ratio      29 33—34
Material properties, shear modulus      29 34
Material properties, strength of      37—40
Material properties, Young's modulus      29 33
Matrix algebra (matrices), determinants      655
Matrix algebra (matrices), eigenvalue problem      655—657
Matrix algebra (matrices), finite element methods      562—571
Matrix algebra (matrices), notation      80—81 645—647
Matrix algebra (matrices), operations      649—652
Matrix algebra (matrices), types of      647—649
Matrix equation, solution of      652—655
Maxwell's reciprocal theorem      544—546
Maxwell, James Clerk      xvii
Mechanical load      1
Mechanical load, beams (indeterminate)      318—328 339—341
Mechanical load, frames (portal)      405—406
Mechanical load, stiffness method      339—341
Mechanical load, trusses (indeterminate)      271 276—279 291 293
Mechanical properties      685—686
Meter (m)      4
Method of section      61—63
Michell, John Henry      xviii
Minimum potential energy, principle of      515—523
Modulus of elasticity      see "Young's modulus"
Moebius, August Ferdinand      xvii
Mohr's circle for plane stress      453—456
Mohr, Otto      xvii 453
Moment curvature relationship (MCR)      168—170
Moment of inertia      154 665—674
Moment of inertia (polar)      667—669
Moment, equilibrium equation expressed in      480
Moment, hogging      19
Moment, sagging      19
Moment, sign convention for external      15—16 17
Muller-Breslau, H.      xviii
Navier formulation      xv 555 556
Navier's table problem      47—49 629—633
Navier, Claude Louis Marie Henri      xiv xvii 154 274
Necking      35
Neumann, Franz      xvii
Neutral axis      130
Neutral plane      130—131 154
Newton (N)      7
Newton, Isaac      xvii 42
Nodal displacement      85—96
Normal (n) sign convention      15—16 25
Normal strain      27
Normal stress      26—27
Null property      273
Octahedral bar, force analysis      65—68
Octahedral bar, strain in      75—76
Octahedral bar, stress in      70—72
Ostrogradsky, Mikhail V.      xvii
Parallel-axis theorem      669—674
Pascal      33
Percent elongation      35
Piola, Gabrio      xvii
Plane area, properties of      659—675
Plane stress      442—445
Plane stress, Mohr's circle for      453—456
Plastic region      35
Plate, stress in      441—442
Poisson's effect      27 154
Poisson's ratio      xvii 29 33—34 154
Poisson, Simeon-Denis      xvii
Polar moment of inertia      667—669
Poncelet, Jean Victor      xvii
Potential energy, principle of minimum      515—523
Pound-force (1bf)      4
Power transmission, circular shafts and      233—236
Pressure vessels, stress in      463
Pressure vessels, stress in, in cylindrical      466—470
Pressure vessels, stress in, in spherical      463—465
Principal stress      448—453
Principal stress, properties of      456—462
Product of inertia      669
Pure flexure condition      154—155
Pure torsion      223
Radian (rad)      4
Radius of gyration      666
Rayleigh, Lord      xvii
Rectangular membranes, elemental equilibrium matrix for      569—570
Rectangular membranes, flexibility matrix for      570
Rectangular membranes, stiffness matrix for      570—571
Redundant force method      xiv 275 531—533 555 556 557
Redundant force method for beams      605—612
Redundant force method for shafts      613—615
Redundant force method, basis structures, force solution      597—600
Redundant force method, basis, structures, types of      595—597
Redundant force method, beams supported by tie rods      615—622
Redundant force method, calculation of      600—603
Redundant force method, calculation of displacement      603—605
Redundant force method, integrated force method      618—622
Redundant force method, steps      595—605
Reissner method      556
Response calculation      1
Response variables, deformation      7 25—26
Response variables, description of      637—640
Response variables, displacement      7 25
Response variables, force      7 10—14
Response variables, strain      7 27
Response variables, stress      7 26—27
Right-hand rule      16 19
Rigid body, principle of virtual work for      509 511—515
Ring problem      633—637
Ritz, Walter      xviii
Rotation, displacement      25
Sagging moment      19
Saint-Venant, Adhemar Jean Claude Barre de      ix xvii 223
Savart, Felix      xvii
Secant formula      488—492
Second (s)      4
Secondary stress analysis      55
Self-stress matrix, derivation of      533—534
Settling of support in a trusses (determinate)      101—104
Settling of support in a trusses (indeterminate)      270—272 281—283 294—296
Settling of support in beams (indeterminate)      335—337 343—344
Settling of support in beams (simple)      183—184
Settling of support in frames (indeterminate)      431—436
Settling of support, stiffness method for      303—305 343—345 434—436
Shaft members      3
Shaft members, sketch for      23
Shafts, determinate, angle of twist      224—225 232—233
Shafts, determinate, applications      217
Shafts, determinate, circular      233—236
Shafts, determinate, composite      232—233
Shafts, determinate, deformation      224—233
Shafts, determinate, power transmission      233—236
Shafts, determinate, torque, analysis of internal      218—222
Shafts, determinate, torsion formula      222—224 225
Shafts, indeterminate, applications      371
Shafts, indeterminate, compatibility conditions      375—376
Shafts, indeterminate, deformation displacement relation      373
Shafts, indeterminate, equations used to analyze      371
Shafts, indeterminate, equilibrium equations      372—373
Shafts, indeterminate, force deformation relation      373—374
Shafts, indeterminate, integrated force method      376—379
Shafts, indeterminate, stiffness method      379—400
Shafts, redundant force for      613—615
Shear center, beams and      184—197
Shear deformation      25
Shear flow, direction of      186
Shear flow, formula      201 202
Shear flow, magnitude of      186—189
Shear force      7 11 688—689
Shear force, beams and shear force diagrams      134—148
Shear force, built-up beams and interface      197—202
Shear force, relationships between bending moment, load, and      149—152
Shear force, sign convention for      18—19 21
shear modulus      29 34
Shear strain      27
Shear stress      26
Shear stress formula      159—164 201 202
shells      3
SI (International System of Units), base units      4
SI (International System of Units), converting to USCS      8 9
Sign conventions for equilibrium equations      43 681—684
Sign conventions, determinate analysis      xi
Sign conventions, indeterminate analysis      xii-xiii
Sign conventions, normal (n)      15—16 25
Sign conventions, right-hand rule      16 19
Sign conventions, tensor (t)      15 17—23 26 27
Slenderness ratio (SR)      12
Slug      8
Small-displacement theory      38—40
Stability problem      478
Steel      28 685
Stiffness matrix      274
Stiffness matrix for bar elements      568—569
Stiffness matrix for rectangular membranes      570—571
Stiffness method      xiii-xiv 555 556
Stiffness method for mechanical load      339—341
Stiffness method for settling of support      303—305 343—344 434—436
Stiffness method for thermal load      300 341—342
Stiffness method, bars, fixed      577—578
Stiffness method, beams (cantilevered)      591—592
Stiffness method, beams (indeterminate)      337—355
Stiffness method, beams (propped)      350—351
Stiffness method, beams (three-span)      360—366
Stiffness method, equations      561
Stiffness method, frames (indeterminate)      421—425 429—431
Stiffness method, shafts (indeterminate)      379—400
Stiffness method, trusses (indeterminate)      274—275 296—300
Stiffness method, trusses (single-bay)      584—586
Stiffness method, trusses (three-bar)      515—518
Stokes, George Gabriel      xvii
strain      1 7 27
Strain energy      35 89—90
Strain energy of total deformations      500—503
Strain energy of total deformations, complementary      503—504
Strain energy, basic concept      498—499
Strain energy, Castigliano's first theorem      523—526
Strain energy, Castigliano's second theorem      93—96 537—539
Strain energy, complementary      499—500
Strain in bar member      74—75
Strain in beams      165—170
Strain in octahedral bar      75—76
Strain, displacement      476
Strain, formulation      ix 687
Strain, gauges      31—32
Strain, hardening      35
Strain, normal versus shear      27
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå