Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles
Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Scattering, Absorption, and Emission of Light by Small Particles

Àâòîð: Mishchenko M.I.

Àííîòàöèÿ:

This thorough and up-to-date treatment introduces the general formalism of scattering, absorption, and emission of light and other electromagnetic radiation by arbitrarily shaped and arbitrarily oriented particles. It discusses the relation of the radiative transfer theory to single-scattering solutions of Maxwell's equations and describes in detail exact theoretical methods and computer codes for calculating scattering, absorption, and emission properties of arbitrarily shaped particles.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 462

Äîáàâëåíà â êàòàëîã: 29.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Absorption      3 11 58
Absorption coefficient      15
Aggregated particles      see “particles aggregated”
Alexander's dark band      259
Amplitude rotation transformation law for      46
Amplitude scattering matrix      37—38 118
Amplitude scattering matrix backscattering      94
Amplitude scattering matrix backscattering theorem for      41—42
Amplitude scattering matrix circular-polarization      106
Amplitude scattering matrix circular-polarization for spherically symmetric particles      141
Amplitude scattering matrix for rotationally symmetric particles      183
Amplitude scattering matrix for spherically symmetric particles      139—140
Amplitude scattering matrix forward-scattering      91—93
Amplitude scattering matrix reciprocity relation for      41 84
Amplitude scattering matrix symmetry properties of      84—85
Amplitude scattering matrix translation transformation law for      66—67
Angle azimuth      16
Angle polar      16
Angle scattering      60 83 87
Angle zenith      see “angle polar”
Angular frequency      5 10
Anomalous diffraction approximation      see “approximation anomalous
Approximation anomalous diffraction      210
Approximation Born      see “approximation Rayleigh
Approximation effective-medium      350
Approximation eikonal      210
Approximation geometrical optics      210—221 258—260 264—265 320—325
Approximation high-energy      210
Approximation Kirchhoff      212 220
Approximation ray optics      see “approximation”
Approximation ray-tracing      see “approximation geometrical optics”
Approximation Rayleigh      206—209 264
Approximation Rayleigh — Debye      see “approximation Rayleigh — Gans”
Approximation Rayleigh — Gans      35 209—10 256 264 271
Approximation Rayleigh — Gans — Stevenson      207
Approximation scalar      109
Approximation single-scattering      6
Approximation Wentzel — Kramers — Brillouin      210
Aspect ratio      73 192 290
Asymmetry parameter      60 96 101 105 295 299—300 304 309 327 340 344 350—351
Asymmetry parameter for spherically symmetric particles      142 239 242—243 245 256—257
Averaging ensemble      72—73 159—160 334—337
Averaging orientation      72—73 172—173 334—337 338 344
Averaging orientation analytical      121 127 131 134 186 199 201
Averaging orientation effects of      279—282
Averaging orientation numerical      134 137 186
Averaging shape      72—73 334—337
Averaging size      72—73 159—161 172—173 335
Averaging size effects of      250—252 279—282 341
Axis ratio for spheroids      171
Azimuth angle      16
Backscatter-to-extinction ratio      267 270 292 295 303 308
Backscattered fraction      299—300 305
Backscattering      7 94—95 99 267—271 320—321
Backscattering depolarization ratio circular      100 228 295—296 307 310 339 342 352 356—358
Backscattering depolarization ratio linear      100 228 295—297 307 309 339 342 352—358
Backscattering theorem      41—42 54
Benchmark results      180—182 189 203-204
Bessel functions, asymptotic form for      360
Bessel functions, spherical      167—169 360 370
Bispheres      see “clusters two-sphere”
Blackbody energy distribution      63
Blackbody Stokes column vector      65 98
Blue moon      250
Born approximation      see “approximation Rayleigh
boundary conditions      5 7 9—10 78 113 145 191 192 196
Boundary conditions absorbing      194 195
Boundary-matching method      196—197
Brewster angle      272
Bulk matter      32
Bulk matter optical constants of      32
Charge density      9
Charge density surface      10
Chebyshev particles      171—172 182 185 319
Chebyshev particles generalized      182 185
Cirrus clouds      see “ice clouds”
Clebsch — Gordan coefficients      128 131 141 369 380—383
Clebsch — Gordan expansion      128 141 368
Clusters      5 80 154
Clusters of spheres      156 190 201 337—347
Clusters of spheroids      201
Clusters two-sphere      74—76 80—81 186—189 203-204 337—345 357—358
Coherency matrix      17
Coherency matrix, additivity of      28
Coherency vector      17 50 54—55
Coherent backscattering      7 42 79—82 220
Completely polarized light      see “fully polarized light”
Composite particles      154—158
Computer codes      158—190 193 195 199 205 214
Condensation trails (contrails)      353—355
Conductivity      9
Constitutive relations      9 117
Continuity equation      9
Coordinate system Cartesian      15
Coordinate system device      130
Coordinate system laboratory      42—46 119 130
Coordinate system particle      42—46 119
Coordinate system right-handed      15—16
Coordinate system spherical      15—16
Coupled dipole method      see “discrete dipole approximation”
Cross section absorption      57—58 227—228 254—255 294 299 302 340 343
Cross section average      71 97
Cross section backscattering      267
Cross section differential scattering      59
Cross section extinction      57—59 119 227 294—295 299 300 339-340 343
Cross section extinction average      70 93
Cross section extinction for randomly oriented particles      132—133
Cross section extinction for spherically symmetric particles      140
Cross section geometrical      59
Cross section radar backscattering      267
Cross section radiation-pressure      62
Cross section radiation-pressure average      71 97
Cross section scattering      57—58 119 294 299 301 340 343
Cross section scattering average      69 71 96
Cross section scattering for macroscopically isotropic and mirror-symmetric media      95—96
Cross section scattering for randomly oriented particles      138-139
Cross section scattering for spherically symmetric particles      140
Current density      9
Current density surface      10
Cylinders circular      171—172 185 203-204 210 213 215—220 299—310
Cylinders circular with extreme aspect ratios      221—222 315—318
Cylinders hexagonal      146 210 213 320—322 350
Delta-function transmission      218—220
Density matrix      see “coherency matrix”
Depolarization      54 100
Dichroism      3 56 78
Differential equation methods      191
Diffraction      see “Fraunhofer diffraction”
Dirac delta function solid-angle      41
Dirac delta function three-dimensional      33
Direct scattering problem      237 351
Discrete dipole approximation      198—199 203 205
Discretized Mie formalism      205 222
Dyad      34
Dyadic      33—34
Dyadic transition operator      35
Dyadic transition operator integral equation for      35
Effective radius      161 285—287
Effective size parameter      250 286
Effective variance      161 251—252 285—287
Effective-medium approximation      350
Efficiency factor for absorption      59 97 254—255
Efficiency factor for backscattering      267 269 292 295
Efficiency factor for extinction      59 97 238—247 253-254 309 312
Efficiency factor for radiation pressure      62 97 257—258 309 312
Efficiency factor for scattering      59 97 253-254
Eikonal approximation      210
Electric displacement      9
electric field      9
Electric permittivity      9
Electric polarization      9
Electric susceptibility      9
Electromagnetic wave      3 12
Electromagnetic wave circular components of      105
Emission column vector, average      71 78 98
Emission column vector, Stokes      63—65
Emission, thermal      3 63—66 97—98
Energy conservation law      11 37 122
Ensemble averaging      72—73 159—160 334—337
Equilibrium, thermal      63—65
Euler angles      42 119—120 367
Ewald — Oseen Extinction Theorem      115
Extended boundary condition      144
Extended boundary condition method      115 142—147 196
Extended boundary condition method convergence of      150—153 170—171 178—180
Extended boundary condition method for rotationally symmetric particles      148—150
Extended boundary condition method iterative      152 205
Extended boundary condition method multiple-multipole      152
Extinction      3 58 78
Extinction matrix circular-polarization      56
Extinction matrix circular-polarization reciprocity relation for      56
Extinction matrix coherency      55
Extinction matrix coherency reciprocity relation for      56
Extinction matrix modified Stokes      56
Extinction matrix modified Stokes reciprocity relation for      56
Extinction matrix Stokes      55—56
Extinction matrix Stokes average      70 78
Extinction matrix Stokes for axially oriented particles      127—132
Extinction matrix Stokes for macroscopically isotropic and mirror-symmetric media      91—93
Extinction matrix Stokes reciprocity relation for      56 71
Extinction matrix Stokes symmetry property of      56
Extinction-to-backscatter ratio      267
Far-field zone      5 35—38
Finite-difference method      194 205
Finite-difference time-domain method      195—196 205 321
Finite-element method      193—195 205
Fraunhofer diffraction      212—213 220 227 258—259
Fredholm integral equation method      200 205
Fully polarized light      27 54
Gaussian random spheres      328
Generalized spherical functions      103 107 366—367
Geometrical optics approximation      210—221 258—260 264—265 320—325
Glory      260 264
Green's function dyadic, free space      33—36 377
Green's function scalar      34—36
Green's vector theorem      142
Halos      320—322 350
Hankel functions      169 370
Helmholtz equation scalar      371
Helmholtz equation vector      193 205 372—373
Homogeneous wave      13
Huygens' principle      115
Hydrometeors nonspherical      100 127 352
Hydrometeors partially aligned      100
Ice clouds      321 322 352 354—355 358
Identity dyadic      33 36
Incident field      31 33 47 116
Independently scattering particles      6 74
Inhomogeneous wave      13
Integral equation methods      191 197—200
Intensity of light      15 18
Interference of light      7 58 79 343 344
Interference structure      240 250—251 279—282
Interstellar dust grains      100 127
Interstellar polarization      99 351
Inverse scattering problem      237 351
Irradiance      see “intensity”
Irregular particles      322—334
Jacobi polynomials      364
Kirchhoff approximation      212 220
Koch fractals      325 327
Koch fractals random      325—328
Kronecker delta      363
Legendre functions, associated      140 360 366 374
Legendre polynomials      360 365
Levitation electrostatic      273 358
Levitation optical      60 228 273
Lidars      228 352 355
Lippmann — Schwinger equations      35
Lorenz — Mie coefficients      122 153—154
Lorenz — Mie computer code      158—165 238
Lorenz — Mie identities      100 352
Lorenz — Mie scattering matrix      99
Lorenz — Mie theory      99 114 115 139—142 238
Magnetic field      9
Magnetic induction      9
Magnetic permiability      9
magnetization      9
Maxwell equations      5 8—9 32 77 78 113 191 195
Maxwell equations, linearity of      37 39 117
Maxwell equations, plane-wave solution of      12—15
Maxwell stress tensor      60
Measurement techniques for scattering      224—233
Measurement techniques for scattering using microwaves      224 230—233
Measurement techniques for scattering using visible and infrared light      113 224—230 273—274 329—334 345 351—358
Measurement techniques for scattering using visible and infrared light two-dimensional angular      230 351—352
Meridional plane      16 23 38 83 88
Method of moments      198—199 205
Microwave analog technique      113 147 230—233
Microwave measurement techniques      224 230—233
Mineral particles      329—339
Monochromatic light      3 12
Monodisperse particles      165 177 238—250 279—282 335 341
natural light      see “unpolarized light”
Near-field effects      80
Nonsphericity, effects of      99—100 279—282
Null-field method      115
Null-field method with discrete sources      152
Optical equivalence principle      18 28
Optical theorem      49 56 58 207
Orientation angle of the polarization ellipse      20
Orientation averaging      see “averaging orientation”
Orientation distribution      72—73
Orientation distribution axially symmetric      73 127
Orientation distribution random      73
Orientation of the scattering object      see “particle orientation”
Outgoing wave      34 36 371 374
Parallel beam of light      3 12
Particle characterization, optical      7 82 229—230 249 273—278 350—358
Particle collection      5 68
Particle collection, tenuous      7
Particle orientation      42
Particle orientation effects of      99—100 279—282
Particle shapes      171—172 182 283 322 325 330
Particles absorbing      124 216
Particles aggregated      154—158
Particles Chebyshev      171—172 182 185 319
Particles Chebyshev generalized      182 185
Particles clay      329—332
Particles composite      154—158
Particles dust      355—356
Particles feldspar      329—331
Particles fly ash      345 348
Particles independently scattering      6 74
Particles irregular      322—334
Particles loess      329—331 335
Particles mineral      329—339
Particles monodisperse      165 177 238—250 279—282 335 341
Particles nonabsorbing      122—125 139 152
Particles polydisperse      158 165 250—273 282—310 345 354 356
Particles polyhedral      146 213 320—323
Particles quartz      329—331 333
Particles randomly and sparsely distributed      68—71 75 77
Particles randomly oriented      73 87 100 132—139
Particles randomly shaped      322
Particles rotationally symmetric      46 93 102 121 125 129 133 135 138 148—150 165 169 171—172 180
Particles Sahara sand      329—331 337
Particles spherical      98—99 102 122 139—142 158 214—216 238—278
Particles spherical anisotropic      222
Particles spherical Faraday-active      221
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå