Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Physical Hydrodynamics

Àâòîðû: Guyon E., Hulin J., Petit L.

Àííîòàöèÿ:

In the course of the last twenty years, teaching and research in fluid mechanics has expanded considerably into the physics and chemistry communities, who in their turn developed new approaches to the teaching of this topic. These approaches are mainly oriented towards the comprehension of fluids of different hierarchies, the development of various experimental tools, and explanations in terms of elementary physical mechanics. Physical Hydrodynamics presents this original approach for the first time. The elementary microscopic basics of the statistical theory of fluids is discussed, as are the classical aspects of deformation and pressure and the laws of conservation. The problem of Low-Reynolds-Number Flows will be addressed, its applications to suspensions and porous media explained. A discussion of the aspects of boundary layers, high-velocity flows and instabilities conclude this presentation of incompressible fluid hydrodynamics. The present book provides a thorough introduction into the topic from a primarily physical point of view and will be a useful textbook and reference work for graduate students, lecturers and researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 528

Äîáàâëåíà â êàòàëîã: 23.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Absolute instabilities      83
Acceleration, particles      91—93
Added mass      "Dressed particles"
Aerodynamics, aeroplane wings      412—417
Aerodynamics, boundary layers      412—420
Aerodynamics, separation phenomenon      415
Aeroplane      see "Airplane"
Air tables      2—4
Airplane wings      see "Wings"
Ampere's law      269
Amphiphilic compounds      37
Analogy, potential flow      248—251
Anemometry      55 122—125 425—427 454 477
Anisotropic particles      97
Antisymmetric component deformation      104—106
Applied forces, symmetry      327—333
Arrhenius-type relation      69
Asphalt industry      139
Asymptotic matching      396
Atomic scale scattering      42—46
Automobiles      417—419
Axially symmetric, conduits      194—196
Axially symmetric, elongational flow      295—297
Axially symmetric, flows      121—122 345—346
Axially symmetric, object wakes      436—438
Bacterial propulsion      332
Baffles      420
Benard — Marangoni instability      97 459—462
Benard — von Karman vortex street      77 299 303—305
Bernoulli's equation, applications      180—189
Bernoulli's equation, conservation of energy      176—189
Bernoulli's equation, curvilinear flow      187—189
Bernoulli's equation, Froude number      207
Bernoulli's equation, one-dimensional flows      182—183
Bernoulli's equation, potential flow      181—182
Bernoulli's equation, stationary flow      180—181
Bingham fluids      136—137 166
Biot and Savart law      277—278
Blasius equation      393—396
bodies      see "Moving solid bodies"
Bond number      35 38 461
Borda's mouthpiece      192 193 194
Bores, tidal      248
Bose — Einstein condensation      482
boundary conditions      144—147
Boundary conditions, ideal fluids      145
Boundary conditions, solid walls      144—145
Boundary conditions, surface tension      145—147
Boundary conditions, two fluids      145—147
Boundary layers      see also "Laminar boundary layers"
Boundary layers, aerodynamics      412—420
Boundary layers, aeroplane wings      384
Boundary layers, concentration      428—431
Boundary layers, constant thickness      406—407
Boundary layers, control      416—420
Boundary layers, displacement thickness      398—399
Boundary layers, drag      397 409—412
Boundary layers, flat plates      385—390
Boundary layers, inlet effect      387
Boundary layers, mass      420—431
Boundary layers, momentum thickness      399
Boundary layers, Prandtl number      422—425
Boundary layers, pressure gradients      400—412
Boundary layers, re-attachment      411
Boundary layers, Schmidt number      421 429
Boundary layers, self-similar velocity      401—405
Boundary layers, semi-infinite plates      385—387
Boundary layers, separation      400 20
Boundary layers, stagnation points/zones      403—404 406 408
Boundary layers, thermal      420—431
Boundary layers, thickness      397—399
Boundary layers, uniform flow      385—387
Boundary layers, velocity profiles      402—404
Boundary layers, velocity profiles within layers      393—400
Boundary layers, velocity profiles, self-similarity      390—393
Boundary layers, vorticity      390
Boussinesq approximation      450
Boycott effect      358
Bragg condition      53 54
Breaking waves      241—245
Brillouin scattering      52—55
Broken symmetry      81
Brownian particles      21—22 29 351—353 355
Bubble tracking      95
Bulges      see "Hydraulic jumps"
Bulk viscosity      135
Capillaries      35 370—372 377—378
Carman — Kozeny relation      372—373
Cartesian co-ordinates      167
Cat's paws      241—245
Catamarans      406 417 418
Catastrophe time      298
Cauchy — Riemann conditions      258
Channels discharge      205—207
Channels discharge, divergent      408
Channels discharge, porous media      373—376
Channels discharge, sluice gates      205—207
Chaotic behaviour      445 471—476
Chimneys      444
Circulation dynamics      279—289
Circulation dynamics, compressible fluids      284—289
Circulation dynamics, conservation      280—284
Circulation dynamics, non-conservative forces      284—289
Circulation dynamics, sources      284—289
Circulation dynamics, viscosity effects      284—289
Co-ordinate systems      167—169
Coanda (teapot) effect      189
Coaxial vortex rings      309 310
Coefficients, drag      324 338—339
Coefficients, molecular diffusion      24—27 29—30
Coefficients, tensors      328—329
Colloidal aggregates      37
Compactness      2—4
Compensated gravity      35
Complex velocity potential      252—266
Complex velocity potential, conformal mapping      256—266
Complex velocity potential, corner flow      254—256
Complex velocity potential, definition      252—253
Complex velocity potential, dipole flow      254
Complex velocity potential, Joukowski transformation      261—264
Complex velocity potential, solid planes      263—264
Complex velocity potential, stagnation point      254—256
Complex velocity potential, uniform parallel flow      253
Compressible fluids      284—289
Concentration boundary layers      428—431
Conductivity, porous media      375—376
conduits      194—196
Conformal mapping      256—266
Conservation of circulation      280—284
Conservation of energy      189—207
Conservation of kinetic energy, Bernoulli's equation      176—189
Conservation of kinetic energy, dissipation through viscosity      178—179
Conservation of kinetic energy, equation derivation      177—178
Conservation of kinetic energy, incompressible fluids      177—179
Conservation of kinetic energy, Newtonian fluids      179
Conservation of mass      18—19 110—115 170—171
Conservation of momentum      171—176
Conservation of momentum, applications      189—207
Conservation of momentum, integral expression      172—176
Conservation of momentum, local equation      171
Conservation of momentum, simple flows      174—176
Conservation of vorticity      293—295
Continuity equations      167—169
Continuity hypothesis      89—90
Control, boundary layers      416—420
Control, separation      417
Convection mechanism comparison      71—76
Convective fluid motion      286—287
Convective momentum transport      57—64
Convective transport      73—76 439—440
Coriolis forces      140 284—285
Corner flow      254—256 259
Couette flow      60 148—149
Couette flow, cylinders      163—166
Couette flow, low Reynolds numbers      321
Couette flow, non-Newtonian fluids      136
Critical slowing, Reynolds number      86
Cubes, Stokes equation      342—343
Cubes, symmetry example      330—331
Curved interfaces      32—35
Curved vortex lines      278—279
Curvilinear flow      187—189
Cyclone-type motion      285
Cylinders, convective      445
Cylinders, Couette flow      163—166
Cylinders, drag      225 411
Cylinders, flow      152—155 221—225
Cylinders, forces on      346
Cylinders, frictional drag      154—155
Cylinders, geometry      17—18
Cylinders, heat diffusion      17—18
Cylinders, Joukowski transformation      262—263
Cylinders, laminar wakes      435
Cylinders, lift      225
Cylinders, pores      370—373
Cylinders, Reynolds numbers      346
Cylinders, rotation      120
Cylinders, streamlines      222—225
Cylinders, transient heat diffusion      17—18
Cylinders, vortices      79—88
Cylinders, wake flow      77—79
Cylindrical co-ordinates      167—168
Dams      198
Darcy's law      366—370
De Broglie relation      40—41
de Laval nozzles      202
Deborah number      139
Deep-water waves      242 245
Deformations, antisymmetric components      104—106
Deformations, flow      99—110
Deformations, infinitesimal      106
Deformations, large      106 109—110
Deformations, rotation      104—106 119
Deformations, small      106—109
Deformations, streamlines      93—95 119—120
Deformations, velocity-gradients      101—104
Density, instabilities      465—469
Diffraction, X-rays      42—46
Diffusion, coefficients      24—27 29—30
Diffusion, conservation of mass      18—19
Diffusion, equations      13
Diffusion, equilibrium      295—298
Diffusion, mass      18—20 21—24
Diffusion, mechanism comparisons      71—76
Diffusion, momentum equations      61—64
Diffusion, thermal      14 17—18 27—28
Diffusion, vorticity      295—298
Diffusive transport      57—64 73—76
Diffusive transport, coefficients comparison      31
Diffusive transport, liquids      28—31
Dimensional-analysis      323—324
Dimensionless form      143—144
Dimensionless numbers      75
Dipole flow      219—220 254
Direct analogue of flow      249
Discharge sluice gates      205—207
Discontinuities, tangential-velocity      301 302
Displacement forces      326—327
Displacement thickness      398—399
Distributions, vorticity      298—310
Doppler anemometry      122—125 454 477
Doppler scattering      52—54
Double alternating vortex streets      303—304
Doubly connected volume      213—214
Drag, boundary layers      397 409—412
Drag, coefficients      324 338—339 397 411
Drag, crisis      411
Drag, cylinders      225 411
Drag, laminar wakes      435—438
Drag, spheres      338—339
Drag, turbulent boundary layers      409—412
Drag, two dimensional obstacles      231—234
Drainage flow      378—380
Dressed particles      237 240
Drilling muds      137
Drops in immiscible fluids      340—341
Dry water      see "Ideal fluid"
Dyes, tracking      95
Dynamic viscosity      60
Einstein relation      30
Einstein summation convention      102 131
Einstein's law      356
Elastic scattering of light      46—52
Electrical analogies      248—251
Electrodes in walls      428—430
Electrolytic tank simulation      249—250
Electromagnetic analogues      114—115 268—279
Elementary representative volume      364
Elongation, vorticity      291—293 295—298
Energy dissipation      179 484—485
Equation of continuity      167—169
Equations of motion, fluids      140—144
Equations of motion, laminar boundary layers      388—393
Equations of motion, near flat plates      388—390
Euler's equation      143 177
Eulerian description      90—91
External pressure gradients      400—412
Extrusion      139
Falkner — Skan equation      401—402
Fastback profile      417—419
Fick's equation      19
Filaments      see "Vortex filaments"
Flat plates, Blasius equation      393—396
Flat plates, boundary layers      385—390
Flat plates, equations of motion      388—390
Flat plates, frictional forces      397
Flow      see also "Couette flow" "Instabilities" "Poiseuille "Potential
Flow, aeroplane wings      413—414
Flow, axially symmetric      121—122
Flow, corner flow      254—256 259
Flow, curvilinear flow      187—189
Flow, cylinders      77—79 152—155 221—225
Flow, Darcy's law      366—370
Flow, deformations      99—110
Flow, drainage      378—380
Flow, examples      221—225
Flow, gradient driven      160—163
Flow, incident at angle on flat plate segment      261—263
Flow, laminar      76
Flow, laminar flow      73
Flow, near solid wall      62—64
Flow, one-dimensional flow      147—148
Flow, oscillating      155—160
Flow, parallel planes      62—64 150—151 158—160 261
Flow, particle trajectories      69—71
Flow, porous media      361—382
Flow, potential      208—267
Flow, quasi-parallel      347—351
Flow, regimes      76—88
Flow, Reynolds numbers      77—79 82 87—88
Flow, Reynolds numbers, large      383—438
Flow, Reynolds numbers, low      311—382
Flow, tubes      152—155
Flow, turbulent      76
Flow, visualisation      95—99
Flow, vortex-generation threshold      82—83
Flow, wakes      77—79
Flow, weirs      199—202
Fluid kinetic energy      see "Conservation of kinetic energy"
Fluidized beds      351
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå