Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Physical Hydrodynamics

Àâòîðû: Guyon E., Hulin J., Petit L.

Àííîòàöèÿ:

In the course of the last twenty years, teaching and research in fluid mechanics has expanded considerably into the physics and chemistry communities, who in their turn developed new approaches to the teaching of this topic. These approaches are mainly oriented towards the comprehension of fluids of different hierarchies, the development of various experimental tools, and explanations in terms of elementary physical mechanics. Physical Hydrodynamics presents this original approach for the first time. The elementary microscopic basics of the statistical theory of fluids is discussed, as are the classical aspects of deformation and pressure and the laws of conservation. The problem of Low-Reynolds-Number Flows will be addressed, its applications to suspensions and porous media explained. A discussion of the aspects of boundary layers, high-velocity flows and instabilities conclude this presentation of incompressible fluid hydrodynamics. The present book provides a thorough introduction into the topic from a primarily physical point of view and will be a useful textbook and reference work for graduate students, lecturers and researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 528

Äîáàâëåíà â êàòàëîã: 23.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Porous media, immiscible fluid flow      377—382
Porous media, length scales      364—365
Porous media, models      368—373
Porous media, permeability models      370—373
Porous media, pores      370—373
Porous media, porosity      362
Porous media, pressure-flow rate      368
Porous media, relative permeability      380—382
potential flow      208—267 see
Potential flow, airplane wing modelling      259—266
Potential flow, Bernoulli's equation      181—182
Potential flow, definitions      210—230
Potential flow, electrical analogy      248—251
Potential flow, examples      210—230
Potential flow, forces acting      230—240
Potential flow, simple      221—230
Potential flow, spherical objects      240
Potential flow, three dimensional obstacles      236—240
Potential flow, two dimensional obstacles      230—236
Potential function combinations      214—221
Prandtl number      74 75 385
Prandtl number, boundary layers      422—425
Prandtl number, greater than unity      422—425
Prandtl number, instabilities      447
Prandtl number, smaller than unity      425
Prandtl theory      388—393
Pressure, differences      32—35
Pressure, distribution      335—336
Pressure, fields, spheres      335
Pressure, flow rate relation      368
Pressure, forces      132
Pressure, gradients      158—160 400—412
Principle of exchange of stability      451
Probe techniques      41—42
Quasi-elastic scattering      46—52
Quasi-parallel flows      347—351
Quasi-stationary velocity profiles      314
Random walk model      21—24
Rankine solids      227—229
Rankine vortex      274—276 295
Rayleigh scattering      46—52 51—52
Rayleigh — Benard instability      443—455
Rayleigh — Benard instability, amplitude variations      453—455
Rayleigh — Benard instability, domains      452—453
Rayleigh — Benard instability, mechanism      445—448
Rayleigh — Benard instability, onset      446
Rayleigh — Benard instability, threshold calculation      448—452
Rayleigh — Benard instability, two-dimensional solution      448—455
Rayleigh — Benard instability, wave vectors      452—453
Rayleigh — Taylor instability      37—40
Reflecting particles      97
Refractive indices      98—99
Relative permeability      380—382
Representative elementary volume concept      24
Reservoirs      192—194
Reversibility      316—318
Reynolds numbers, critical slowing      86
Reynolds numbers, diffusion/convection mechanisms comparisons      71—73
Reynolds numbers, flow patterns      77—79 82 87—88
Reynolds numbers, Landau model      83—86
Reynolds numbers, large      383—438
Reynolds numbers, low      see also "Viscosity effects"
Reynolds numbers, low, Couette flow      321
Reynolds numbers, low, cylinders      346
Reynolds numbers, low, dimensional analysis      323—324
Reynolds numbers, low, energy dissipation      322—323
Reynolds numbers, low, equations of motion      313—324
Reynolds numbers, low, examples      311—313
Reynolds numbers, low, flow      311—382
Reynolds numbers, low, lubrication      347—351
Reynolds numbers, low, quasi-parallel flows      347—351
Reynolds numbers, low, spheres      333—346
Reynolds numbers, low, stationary finite-size objects      318—319
Reynolds numbers, low, Stokes equation      313—322 343—346
Reynolds numbers, low, streamlines invariance      320—321
Reynolds numbers, low, uniform-velocity      333—346
Reynolds numbers, momentum      71—73 74—75
Reynolds numbers, turbulent flow      87—88
Reynolds numbers, vortex-generation threshold      82—83
Rheology      352—356
Rossby number      285 298
Rotation, deformations      104—106 119
Savart law      277—278
Scattering      see also "Rayleigh scattering"
Scattering, atomic scale      42—46
Scattering, Brillouin      52—55
Scattering, Doppler      52—54
Scattering, inelastic      45—46 52—55
Scattering, light      46—52
Schlieren method      98—99
Schmidt number      75 421 429
Sedimentation, concentrated suspensions      359—361
Sedimentation, particles      357—361
Sedimentation, spheres      357—358
Self-induced velocity field      278—279
Self-similar flow      390—393 407—408
Self-similar velocity      401—405
Semi-infinite plates      385—387
Separation, aerodynamics      415
Separation, boundary layers      400—420
Separation, control      417
Separation, inclined plates      403
Separation, points      410
Separation, turbulent boundary layers      409—412
Shallow-water waves      243 245—246
Shear, momentum transport      59—64
Shear, parallel oscillations of plane      155—158
Shear, pressure forces      132
Shear, simple flow      148—149
Shear, stress      132
Shear, tensors      132
Shear-thickening fluids      137—138
Shear-thinning fluids      137
Simple flows, conservation of momentum      174—176
Simple flows, examples      221—230
Simple flows, velocity potentials      214—221
Singularities      298—310 484
sinks      217—218 229—230
Sintered glass beads      374—375
Sluice gates      205—207
Smoke      95 443 444
Solid bodies      59 324—333
Solid planes      263—264
Solid walls      see "Walls"
Solid-liquid transition      7—8
Solitons (solitary waves)      246—248
Spectroscopy      40—55
Spheres      see also "Stokes equation"
Spheres, axisymmetric flow      345—346
Spheres, constant velocity      345—346
Spheres, drag coefficient      338—339
Spheres, forces acting on      338—339
Spheres, horizontal walls      319—320
Spheres, infinite extent fluids      338—339
Spheres, potential flow      240
Spheres, pressure distribution      335—336
Spheres, relative motion      351
Spheres, Reynolds numbers      333—346
Spheres, sedimentation      357—358
Spheres, stream functions      336—337
Spheres, symmetry example      330—331
Spheres, terminal velocity      339 359
Spheres, uniform flow      226—227 333—346
Spheres, velocity fields      333—337
Spheres, viscous fluids      333—346
Spheres, vorticity      335—336
Spherical polar co-ordinates      168—169
Spinning helix      331—332
spirals      see "Helix"
Stability      399—400 451 see
Staggering drunk      see "Random walk model"
Stagnation points      108 114 120 254—256
Stagnation points/zones      403—404 406 408
Stagnation pressure      181
Stationary conduits      149—155
Stationary finite-size objects      318—319
Stationary flow      180—181
Stokes equation      313—322 see
Stokes equation, cubes      342—343
Stokes equation, limitations      343—346
Stokes equation, reversibility      316—321
Stokes equation, Reynolds number      343—346
Stokes equation, solutions      315—323 340—343
Stokes equation, uniqueness      315—316
Stokes' theorem      212 287—288
Stokeslet velocity field      342
strain      see "Deformation"
Streaklines      93—95
Stream functions      115—122 294—295
Stream functions, examples      117—121
Stream functions, Hill's spherical vortex      294—295
Stream functions, spheres      336—337
Stream functions, two dimensional flows      117—121 266
Stream functions, velocity component derivation      267
Stream-tubes      93—95
Streamlines      93—95 119—120
Streamlines, cylinders      222—225
Streamlines, invariance      320—321
Streamlines, mapping      256—230
Streamlines, sink/vortex superposition      229—230
Streets      see "Vortex streets"
Stress      128—169
Stress, rate of change      8
Stress, tensors      128—133 167—169
Strouhal number      305
Superfluid helium      482—488
Superfluid helium, energy dissipation      484—485
Superfluid helium, velocity      483—484
Superfluid helium, vortices      485—488
Superheating      33
Surface effects      31—40
Surface effects, pressure differences      32—35
Surface forces      128—140
Surface tension      31—40
Surface tension, boundary conditions      145—147
Surface tension, gradient driven flow      160—163
Surface tension, ignored      465—467
Surface tension, instabilities      465—469
Surface tension, surfactant effect      35—37
Surface waves, equation derivation      243—245
Surface waves, fluid particle trajectories      245—246
Surface waves, ideal fluids      240—248
Surfactant effect      35—37
Suspensions, dynamics      351—361
Suspensions, rheology      352—356
Suspensions, sedimentation      359—361
Suspensions, viscosity      353 355—356
Swells      241—245
Symmetry, applied forces      327—333
Symmetry, broken      81
Symmetry, conduits      194—196
Symmetry, examples      329—331
Symmetry, mutually perpendicular planes      329—331
Symmetry, rotational coupling      331—333
Symmetry, tensors      326—327
Symmetry, torque      327—333
Symmetry, translational-rotational coupling      331—333
Symmetry, variable cross-section conduits      194—196
Tacoma Narrows bridge      76 305
Tangential-velocity discontinuity      301 302
Taylor — Couette instability      455—459
Taylor — Couette rolls      166
Taylor's number      457—459
Taylor, G.I.      316—318
Teapot effect      see "Coanda effect"
Temperature gradients      440 453
Temperature variations      14—16
Tensors, coefficients      328—329
Tensors, general symmetry      326—327
Tensors, momentum flux      172—173
Tensors, stress      128—133 167—169
Tensors, viscous shear stress      132—133
Terminal velocity, spheres      339 359
thermal conductivity      9—18
Thermal conductivity, boundary layers      420 421—427
Thermal conductivity, cylindrical geometry      11—12
Thermal conductivity, definition      9—11
Thermal conductivity, liquids      30
Thermal convection      286—287 439—443
Thermal diffusivity      14 27—28
Thermal exchanges      see "Heat exchange"
Thermal gradients      441
Thermal marking      126—127
Thermal Peclet number      74 75
Thixotropic fluids      138
Thompson, A.H.      376 378—379
Three dimensional obstacles      236—240
Three dimensions, Darcy's law      367
Three dimensions, turbulence      479—481
Three mutually perpendicular planes of symmetry      329—331
Tidal bores      248
Tidal waves      243
Time-dependent fluids      138
Tornadoes      269 270
torque      324—333
Tortuosity      363
Tracers      19—20
Tracking      95
Trajectories, particles      94
Transformation      see "Joukowski transformation"
Transient heat diffusion      17—18
Translational-rotational coupling      331—333
Transport coefficients      see also "Mass transport"
Transport coefficients, heat      56
Transport coefficients, ideal gases      24—28
Transport coefficients, macroscopic      8—20
Transport coefficients, microscopic models      21—31
Transport coefficients, momentum      56
Tribology      see "Lubrication"
Tsunami (tidal waves)      243
Tubes, angular momentum      281—282
Tubes, flow      152—155
Tubes, flux      283
Tubes, frictional drag      154—155
Tubes, vorticity      281—283
tunnels      see "Wind tunnels"
Turbo-sails      406
Turbulence, boundary layers      399—400 409—412
Turbulence, flow      76 87—88 297—298
Turbulence, frequency spectrum      473—474
Turbulence, fully developed      476—481
Turbulence, instabilities      476—481
Turbulence, large-scale structures      87—88
Turbulence, quasi-periodic state      473—474
Turbulence, Reynolds number      87—88
Turbulence, three-dimensional flow      479—481
Turbulence, two-dimensional flow      477—479
Turbulence, vorticity      297—298
Twisting, vortex tubes      291—293
Two dimensional flows      119
Two dimensional flows, stream functions      266
Two dimensional flows, turbulence      477—479
Two dimensional flows, velocity potentials      230—231 266
Two dimensional models, porous media      368—370
Two dimensional obstacles, drag      231—234
Two dimensional obstacles, forces acting      231—236
Two dimensional obstacles, lift      231—234
Two dimensional obstacles, potential flow      230—236
Two dimensional obstacles, velocity potential      230—236
Uniform flow, boundary layers      385—387
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå