Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Physical Hydrodynamics
Àâòîðû: Guyon E., Hulin J., Petit L.
Àííîòàöèÿ: In the course of the last twenty years, teaching and research in fluid mechanics has expanded considerably into the physics and chemistry communities, who in their turn developed new approaches to the teaching of this topic. These approaches are mainly oriented towards the comprehension of fluids of different hierarchies, the development of various experimental tools, and explanations in terms of elementary physical mechanics. Physical Hydrodynamics presents this original approach for the first time. The elementary microscopic basics of the statistical theory of fluids is discussed, as are the classical aspects of deformation and pressure and the laws of conservation. The problem of Low-Reynolds-Number Flows will be addressed, its applications to suspensions and porous media explained. A discussion of the aspects of boundary layers, high-velocity flows and instabilities conclude this presentation of incompressible fluid hydrodynamics. The present book provides a thorough introduction into the topic from a primarily physical point of view and will be a useful textbook and reference work for graduate students, lecturers and researchers.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 528
Äîáàâëåíà â êàòàëîã: 23.02.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Porous media, immiscible fluid flow 377—382
Porous media, length scales 364—365
Porous media, models 368—373
Porous media, permeability models 370—373
Porous media, pores 370—373
Porous media, porosity 362
Porous media, pressure-flow rate 368
Porous media, relative permeability 380—382
potential flow 208—267 see
Potential flow, airplane wing modelling 259—266
Potential flow, Bernoulli's equation 181—182
Potential flow, definitions 210—230
Potential flow, electrical analogy 248—251
Potential flow, examples 210—230
Potential flow, forces acting 230—240
Potential flow, simple 221—230
Potential flow, spherical objects 240
Potential flow, three dimensional obstacles 236—240
Potential flow, two dimensional obstacles 230—236
Potential function combinations 214—221
Prandtl number 74 75 385
Prandtl number, boundary layers 422—425
Prandtl number, greater than unity 422—425
Prandtl number, instabilities 447
Prandtl number, smaller than unity 425
Prandtl theory 388—393
Pressure, differences 32—35
Pressure, distribution 335—336
Pressure, fields, spheres 335
Pressure, flow rate relation 368
Pressure, forces 132
Pressure, gradients 158—160 400—412
Principle of exchange of stability 451
Probe techniques 41—42
Quasi-elastic scattering 46—52
Quasi-parallel flows 347—351
Quasi-stationary velocity profiles 314
Random walk model 21—24
Rankine solids 227—229
Rankine vortex 274—276 295
Rayleigh scattering 46—52 51—52
Rayleigh — Benard instability 443—455
Rayleigh — Benard instability, amplitude variations 453—455
Rayleigh — Benard instability, domains 452—453
Rayleigh — Benard instability, mechanism 445—448
Rayleigh — Benard instability, onset 446
Rayleigh — Benard instability, threshold calculation 448—452
Rayleigh — Benard instability, two-dimensional solution 448—455
Rayleigh — Benard instability, wave vectors 452—453
Rayleigh — Taylor instability 37—40
Reflecting particles 97
Refractive indices 98—99
Relative permeability 380—382
Representative elementary volume concept 24
Reservoirs 192—194
Reversibility 316—318
Reynolds numbers, critical slowing 86
Reynolds numbers, diffusion/convection mechanisms comparisons 71—73
Reynolds numbers, flow patterns 77—79 82 87—88
Reynolds numbers, Landau model 83—86
Reynolds numbers, large 383—438
Reynolds numbers, low see also "Viscosity effects"
Reynolds numbers, low, Couette flow 321
Reynolds numbers, low, cylinders 346
Reynolds numbers, low, dimensional analysis 323—324
Reynolds numbers, low, energy dissipation 322—323
Reynolds numbers, low, equations of motion 313—324
Reynolds numbers, low, examples 311—313
Reynolds numbers, low, flow 311—382
Reynolds numbers, low, lubrication 347—351
Reynolds numbers, low, quasi-parallel flows 347—351
Reynolds numbers, low, spheres 333—346
Reynolds numbers, low, stationary finite-size objects 318—319
Reynolds numbers, low, Stokes equation 313—322 343—346
Reynolds numbers, low, streamlines invariance 320—321
Reynolds numbers, low, uniform-velocity 333—346
Reynolds numbers, momentum 71—73 74—75
Reynolds numbers, turbulent flow 87—88
Reynolds numbers, vortex-generation threshold 82—83
Rheology 352—356
Rossby number 285 298
Rotation, deformations 104—106 119
Savart law 277—278
Scattering see also "Rayleigh scattering"
Scattering, atomic scale 42—46
Scattering, Brillouin 52—55
Scattering, Doppler 52—54
Scattering, inelastic 45—46 52—55
Scattering, light 46—52
Schlieren method 98—99
Schmidt number 75 421 429
Sedimentation, concentrated suspensions 359—361
Sedimentation, particles 357—361
Sedimentation, spheres 357—358
Self-induced velocity field 278—279
Self-similar flow 390—393 407—408
Self-similar velocity 401—405
Semi-infinite plates 385—387
Separation, aerodynamics 415
Separation, boundary layers 400—420
Separation, control 417
Separation, inclined plates 403
Separation, points 410
Separation, turbulent boundary layers 409—412
Shallow-water waves 243 245—246
Shear, momentum transport 59—64
Shear, parallel oscillations of plane 155—158
Shear, pressure forces 132
Shear, simple flow 148—149
Shear, stress 132
Shear, tensors 132
Shear-thickening fluids 137—138
Shear-thinning fluids 137
Simple flows, conservation of momentum 174—176
Simple flows, examples 221—230
Simple flows, velocity potentials 214—221
Singularities 298—310 484
sinks 217—218 229—230
Sintered glass beads 374—375
Sluice gates 205—207
Smoke 95 443 444
Solid bodies 59 324—333
Solid planes 263—264
Solid walls see "Walls"
Solid-liquid transition 7—8
Solitons (solitary waves) 246—248
Spectroscopy 40—55
Spheres see also "Stokes equation"
Spheres, axisymmetric flow 345—346
Spheres, constant velocity 345—346
Spheres, drag coefficient 338—339
Spheres, forces acting on 338—339
Spheres, horizontal walls 319—320
Spheres, infinite extent fluids 338—339
Spheres, potential flow 240
Spheres, pressure distribution 335—336
Spheres, relative motion 351
Spheres, Reynolds numbers 333—346
Spheres, sedimentation 357—358
Spheres, stream functions 336—337
Spheres, symmetry example 330—331
Spheres, terminal velocity 339 359
Spheres, uniform flow 226—227 333—346
Spheres, velocity fields 333—337
Spheres, viscous fluids 333—346
Spheres, vorticity 335—336
Spherical polar co-ordinates 168—169
Spinning helix 331—332
spirals see "Helix"
Stability 399—400 451 see
Staggering drunk see "Random walk model"
Stagnation points 108 114 120 254—256
Stagnation points/zones 403—404 406 408
Stagnation pressure 181
Stationary conduits 149—155
Stationary finite-size objects 318—319
Stationary flow 180—181
Stokes equation 313—322 see
Stokes equation, cubes 342—343
Stokes equation, limitations 343—346
Stokes equation, reversibility 316—321
Stokes equation, Reynolds number 343—346
Stokes equation, solutions 315—323 340—343
Stokes equation, uniqueness 315—316
Stokes' theorem 212 287—288
Stokeslet velocity field 342
strain see "Deformation"
Streaklines 93—95
Stream functions 115—122 294—295
Stream functions, examples 117—121
Stream functions, Hill's spherical vortex 294—295
Stream functions, spheres 336—337
Stream functions, two dimensional flows 117—121 266
Stream functions, velocity component derivation 267
Stream-tubes 93—95
Streamlines 93—95 119—120
Streamlines, cylinders 222—225
Streamlines, invariance 320—321
Streamlines, mapping 256—230
Streamlines, sink/vortex superposition 229—230
Streets see "Vortex streets"
Stress 128—169
Stress, rate of change 8
Stress, tensors 128—133 167—169
Strouhal number 305
Superfluid helium 482—488
Superfluid helium, energy dissipation 484—485
Superfluid helium, velocity 483—484
Superfluid helium, vortices 485—488
Superheating 33
Surface effects 31—40
Surface effects, pressure differences 32—35
Surface forces 128—140
Surface tension 31—40
Surface tension, boundary conditions 145—147
Surface tension, gradient driven flow 160—163
Surface tension, ignored 465—467
Surface tension, instabilities 465—469
Surface tension, surfactant effect 35—37
Surface waves, equation derivation 243—245
Surface waves, fluid particle trajectories 245—246
Surface waves, ideal fluids 240—248
Surfactant effect 35—37
Suspensions, dynamics 351—361
Suspensions, rheology 352—356
Suspensions, sedimentation 359—361
Suspensions, viscosity 353 355—356
Swells 241—245
Symmetry, applied forces 327—333
Symmetry, broken 81
Symmetry, conduits 194—196
Symmetry, examples 329—331
Symmetry, mutually perpendicular planes 329—331
Symmetry, rotational coupling 331—333
Symmetry, tensors 326—327
Symmetry, torque 327—333
Symmetry, translational-rotational coupling 331—333
Symmetry, variable cross-section conduits 194—196
Tacoma Narrows bridge 76 305
Tangential-velocity discontinuity 301 302
Taylor — Couette instability 455—459
Taylor — Couette rolls 166
Taylor's number 457—459
Taylor, G.I. 316—318
Teapot effect see "Coanda effect"
Temperature gradients 440 453
Temperature variations 14—16
Tensors, coefficients 328—329
Tensors, general symmetry 326—327
Tensors, momentum flux 172—173
Tensors, stress 128—133 167—169
Tensors, viscous shear stress 132—133
Terminal velocity, spheres 339 359
thermal conductivity 9—18
Thermal conductivity, boundary layers 420 421—427
Thermal conductivity, cylindrical geometry 11—12
Thermal conductivity, definition 9—11
Thermal conductivity, liquids 30
Thermal convection 286—287 439—443
Thermal diffusivity 14 27—28
Thermal exchanges see "Heat exchange"
Thermal gradients 441
Thermal marking 126—127
Thermal Peclet number 74 75
Thixotropic fluids 138
Thompson, A.H. 376 378—379
Three dimensional obstacles 236—240
Three dimensions, Darcy's law 367
Three dimensions, turbulence 479—481
Three mutually perpendicular planes of symmetry 329—331
Tidal bores 248
Tidal waves 243
Time-dependent fluids 138
Tornadoes 269 270
torque 324—333
Tortuosity 363
Tracers 19—20
Tracking 95
Trajectories, particles 94
Transformation see "Joukowski transformation"
Transient heat diffusion 17—18
Translational-rotational coupling 331—333
Transport coefficients see also "Mass transport"
Transport coefficients, heat 56
Transport coefficients, ideal gases 24—28
Transport coefficients, macroscopic 8—20
Transport coefficients, microscopic models 21—31
Transport coefficients, momentum 56
Tribology see "Lubrication"
Tsunami (tidal waves) 243
Tubes, angular momentum 281—282
Tubes, flow 152—155
Tubes, flux 283
Tubes, frictional drag 154—155
Tubes, vorticity 281—283
tunnels see "Wind tunnels"
Turbo-sails 406
Turbulence, boundary layers 399—400 409—412
Turbulence, flow 76 87—88 297—298
Turbulence, frequency spectrum 473—474
Turbulence, fully developed 476—481
Turbulence, instabilities 476—481
Turbulence, large-scale structures 87—88
Turbulence, quasi-periodic state 473—474
Turbulence, Reynolds number 87—88
Turbulence, three-dimensional flow 479—481
Turbulence, two-dimensional flow 477—479
Turbulence, vorticity 297—298
Twisting, vortex tubes 291—293
Two dimensional flows 119
Two dimensional flows, stream functions 266
Two dimensional flows, turbulence 477—479
Two dimensional flows, velocity potentials 230—231 266
Two dimensional models, porous media 368—370
Two dimensional obstacles, drag 231—234
Two dimensional obstacles, forces acting 231—236
Two dimensional obstacles, lift 231—234
Two dimensional obstacles, potential flow 230—236
Two dimensional obstacles, velocity potential 230—236
Uniform flow, boundary layers 385—387
Ðåêëàìà