Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Physical Hydrodynamics
Àâòîðû: Guyon E., Hulin J., Petit L.
Àííîòàöèÿ: In the course of the last twenty years, teaching and research in fluid mechanics has expanded considerably into the physics and chemistry communities, who in their turn developed new approaches to the teaching of this topic. These approaches are mainly oriented towards the comprehension of fluids of different hierarchies, the development of various experimental tools, and explanations in terms of elementary physical mechanics. Physical Hydrodynamics presents this original approach for the first time. The elementary microscopic basics of the statistical theory of fluids is discussed, as are the classical aspects of deformation and pressure and the laws of conservation. The problem of Low-Reynolds-Number Flows will be addressed, its applications to suspensions and porous media explained. A discussion of the aspects of boundary layers, high-velocity flows and instabilities conclude this presentation of incompressible fluid hydrodynamics. The present book provides a thorough introduction into the topic from a primarily physical point of view and will be a useful textbook and reference work for graduate students, lecturers and researchers.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 528
Äîáàâëåíà â êàòàëîã: 23.02.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Uniform flow, spheres 226—227
Uniform parallel flow 215—216 253
Uniform-velocity, arbitrary shaped objects 341—343
Uniform-velocity, frictional forces 341—343
Uniform-velocity, spheres 333—346
Van der Waals model 5 82 484
Variable cross-sections, conduits 194—196
Variable separation 220—221
Variable superposition 220—221
Velocity potentials 210—230
Velocity potentials, complex 252—266
Velocity potentials, component derivation 267
Velocity potentials, function combinations 214—221
Velocity potentials, irrotational nature 208
Velocity potentials, multipole expansion 220—221
Velocity potentials, simple flows 214—221
Velocity potentials, three dimensional obstacles 236—237
Velocity potentials, two dimensional flows 230—231 266
Velocity potentials, uniqueness 210—214
Velocity profiles, boundary layers 393—400 402—404
Velocity profiles, instabilities 470—471
Velocity profiles, self-similarity 390—393
Velocity profiles, thermal gradients 441
Velocity profiles, wakes 435—438
Velocity, fields 333—337
Velocity, gradients 101—104 122—127 430—431
Velocity, hydraulic jumps 203—204
Velocity, jets 192—193
Velocity, local 122—123 125—127
Velocity, measurements 122—127
Velocity, optical signal frequency 123—125
Velocity, quasi-stationary 314
Velocity, superfluid helium 483—484
Vena contracta calculation 193—194
Venturi gauges 184—186
Vinen and Hall experiment 486—488
Viscoelastic fluids 138—139
Viscosity, bulk 135
Viscosity, circulation dynamics 284—289 288—289
Viscosity, concept introduction 59—64
Viscosity, definition 59—60
Viscosity, dynamic 60
Viscosity, energy dissipation 178—179
Viscosity, fluids 149—160 177—179 284—289
Viscosity, gases 64—67
Viscosity, incompressible fluids 177—179
Viscosity, kinematic 62
Viscosity, liquids 67—69
Viscosity, microscopic models 64—71
Viscosity, Newtonian fluids 134—135
Viscosity, oscillating flows 155—160
Viscosity, shear stress 132—133 134—135
Viscosity, spheres 333—346
Viscosity, stationary conduits 149—155
Viscosity, suspensions 353 355—356
Viscosity, tensors 132—133
Viscosity, vorticity 288—289
Visualisation, flow 95—99
Visualisation, particle use 97
Visualisation, photo-active substances 97—98
Volume forces, non-conservative 284—286
von Karman see "Benard — von Karman vortex street"
Vortex filaments 298—299
Vortex flow 216—217
Vortex lines 278—279 298—310
Vortex rings 299 305—310
Vortex rings, coaxial 309 310
Vortex rings, kinetic energy 307
Vortex rings, momentum 307—310
Vortex rings, solid walls 308 310
Vortex rings, velocity 306—307
Vortex sheets 301
Vortex streets 77 88 299 301—305
Vortex tubes 271—277 291—293
Vortices 229—230 253—254 see
Vortices, cylinders 79—88
Vortices, dynamics 268—310
Vortices, generation threshold 82—83
Vortices, helium rings 488
Vortices, Hill's spherical 293—295
Vortices, line 274—279 298—310
Vortices, Rankine 274—276 295
Vortices, superfluid helium 485—488
Vorticity 268—310
Vorticity, arbitrary distributions 277—279
Vorticity, axially symmetric elongational flow 295—297
Vorticity, boundary layers 390
Vorticity, conservation 293—295
Vorticity, diffusion equilibrium 295—298
Vorticity, distributions examples 298—310
Vorticity, dynamics 289—298
Vorticity, electromagnetic analogue 268—279
Vorticity, elongation equilibrium 295—298
Vorticity, fluid layer thickness 292—293
Vorticity, flux 283
Vorticity, instabilities 470—471
Vorticity, layer thickness 292—293
Vorticity, line-vortex pairs 300—301
Vorticity, parallel line vortices 300—305
Vorticity, singularities 298—310
Vorticity, spheres 335—336
Vorticity, tubes 281—283
Vorticity, turbulent flow 297—298
Vorticity, vectors 268—269
Vorticity, viscosity effects 288—289
Vorticity, vortex filament concentration 298—299
Wakes see also "Laminar wakes"
Wakes, axially symmetric objects 436—438
Wakes, far from objects 433—435
Wakes, oil tankers 87
Wakes, velocity profiles 435—438
Walls, boundary conditions 144—145
Walls, electrodes 428—430
Walls, flow near 62—64
Walls, spheres dropping towards 319—320
Walls, velocity near 430—431
Walls, vortex rings 308 310
Waves, breaking 241—245
Waves, deep-water 242 245
Waves, shallow-water 243 245—246
Waves, solitary 246—248
Waves, solitons 246—248
Waves, surface waves 240—248
Waves, tidal 243
Waves, vectors 452—453
weaving 140
Weirs 199—202
Weissenberg effect 139
Wind tunnels 420
Wings, aerodynamics 412—417
Wings, boundary layers 384
Wings, control flaps 416—417
Wings, flow profiles 413—414
Wings, lift forces 265—266 412
Wings, modelling 259—266
X-rays 40 41 42—46
Young — Laplace law 33 145
Ðåêëàìà