Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Physical Hydrodynamics

Àâòîðû: Guyon E., Hulin J., Petit L.

Àííîòàöèÿ:

In the course of the last twenty years, teaching and research in fluid mechanics has expanded considerably into the physics and chemistry communities, who in their turn developed new approaches to the teaching of this topic. These approaches are mainly oriented towards the comprehension of fluids of different hierarchies, the development of various experimental tools, and explanations in terms of elementary physical mechanics. Physical Hydrodynamics presents this original approach for the first time. The elementary microscopic basics of the statistical theory of fluids is discussed, as are the classical aspects of deformation and pressure and the laws of conservation. The problem of Low-Reynolds-Number Flows will be addressed, its applications to suspensions and porous media explained. A discussion of the aspects of boundary layers, high-velocity flows and instabilities conclude this presentation of incompressible fluid hydrodynamics. The present book provides a thorough introduction into the topic from a primarily physical point of view and will be a useful textbook and reference work for graduate students, lecturers and researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 528

Äîáàâëåíà â êàòàëîã: 23.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Uniform flow, spheres      226—227
Uniform parallel flow      215—216 253
Uniform-velocity, arbitrary shaped objects      341—343
Uniform-velocity, frictional forces      341—343
Uniform-velocity, spheres      333—346
Van der Waals model      5 82 484
Variable cross-sections, conduits      194—196
Variable separation      220—221
Variable superposition      220—221
Velocity potentials      210—230
Velocity potentials, complex      252—266
Velocity potentials, component derivation      267
Velocity potentials, function combinations      214—221
Velocity potentials, irrotational nature      208
Velocity potentials, multipole expansion      220—221
Velocity potentials, simple flows      214—221
Velocity potentials, three dimensional obstacles      236—237
Velocity potentials, two dimensional flows      230—231 266
Velocity potentials, uniqueness      210—214
Velocity profiles, boundary layers      393—400 402—404
Velocity profiles, instabilities      470—471
Velocity profiles, self-similarity      390—393
Velocity profiles, thermal gradients      441
Velocity profiles, wakes      435—438
Velocity, fields      333—337
Velocity, gradients      101—104 122—127 430—431
Velocity, hydraulic jumps      203—204
Velocity, jets      192—193
Velocity, local      122—123 125—127
Velocity, measurements      122—127
Velocity, optical signal frequency      123—125
Velocity, quasi-stationary      314
Velocity, superfluid helium      483—484
Vena contracta calculation      193—194
Venturi gauges      184—186
Vinen and Hall experiment      486—488
Viscoelastic fluids      138—139
Viscosity, bulk      135
Viscosity, circulation dynamics      284—289 288—289
Viscosity, concept introduction      59—64
Viscosity, definition      59—60
Viscosity, dynamic      60
Viscosity, energy dissipation      178—179
Viscosity, fluids      149—160 177—179 284—289
Viscosity, gases      64—67
Viscosity, incompressible fluids      177—179
Viscosity, kinematic      62
Viscosity, liquids      67—69
Viscosity, microscopic models      64—71
Viscosity, Newtonian fluids      134—135
Viscosity, oscillating flows      155—160
Viscosity, shear stress      132—133 134—135
Viscosity, spheres      333—346
Viscosity, stationary conduits      149—155
Viscosity, suspensions      353 355—356
Viscosity, tensors      132—133
Viscosity, vorticity      288—289
Visualisation, flow      95—99
Visualisation, particle use      97
Visualisation, photo-active substances      97—98
Volume forces, non-conservative      284—286
von Karman      see "Benard — von Karman vortex street"
Vortex filaments      298—299
Vortex flow      216—217
Vortex lines      278—279 298—310
Vortex rings      299 305—310
Vortex rings, coaxial      309 310
Vortex rings, kinetic energy      307
Vortex rings, momentum      307—310
Vortex rings, solid walls      308 310
Vortex rings, velocity      306—307
Vortex sheets      301
Vortex streets      77 88 299 301—305
Vortex tubes      271—277 291—293
Vortices      229—230 253—254 see
Vortices, cylinders      79—88
Vortices, dynamics      268—310
Vortices, generation threshold      82—83
Vortices, helium rings      488
Vortices, Hill's spherical      293—295
Vortices, line      274—279 298—310
Vortices, Rankine      274—276 295
Vortices, superfluid helium      485—488
Vorticity      268—310
Vorticity, arbitrary distributions      277—279
Vorticity, axially symmetric elongational flow      295—297
Vorticity, boundary layers      390
Vorticity, conservation      293—295
Vorticity, diffusion equilibrium      295—298
Vorticity, distributions examples      298—310
Vorticity, dynamics      289—298
Vorticity, electromagnetic analogue      268—279
Vorticity, elongation equilibrium      295—298
Vorticity, fluid layer thickness      292—293
Vorticity, flux      283
Vorticity, instabilities      470—471
Vorticity, layer thickness      292—293
Vorticity, line-vortex pairs      300—301
Vorticity, parallel line vortices      300—305
Vorticity, singularities      298—310
Vorticity, spheres      335—336
Vorticity, tubes      281—283
Vorticity, turbulent flow      297—298
Vorticity, vectors      268—269
Vorticity, viscosity effects      288—289
Vorticity, vortex filament concentration      298—299
Wakes      see also "Laminar wakes"
Wakes, axially symmetric objects      436—438
Wakes, far from objects      433—435
Wakes, oil tankers      87
Wakes, velocity profiles      435—438
Walls, boundary conditions      144—145
Walls, electrodes      428—430
Walls, flow near      62—64
Walls, spheres dropping towards      319—320
Walls, velocity near      430—431
Walls, vortex rings      308 310
Waves, breaking      241—245
Waves, deep-water      242 245
Waves, shallow-water      243 245—246
Waves, solitary      246—248
Waves, solitons      246—248
Waves, surface waves      240—248
Waves, tidal      243
Waves, vectors      452—453
weaving      140
Weirs      199—202
Weissenberg effect      139
Wind tunnels      420
Wings, aerodynamics      412—417
Wings, boundary layers      384
Wings, control flaps      416—417
Wings, flow profiles      413—414
Wings, lift forces      265—266 412
Wings, modelling      259—266
X-rays      40 41 42—46
Young — Laplace law      33 145
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå