Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Physical Hydrodynamics
Àâòîðû: Guyon E., Hulin J., Petit L.
Àííîòàöèÿ: In the course of the last twenty years, teaching and research in fluid mechanics has expanded considerably into the physics and chemistry communities, who in their turn developed new approaches to the teaching of this topic. These approaches are mainly oriented towards the comprehension of fluids of different hierarchies, the development of various experimental tools, and explanations in terms of elementary physical mechanics. Physical Hydrodynamics presents this original approach for the first time. The elementary microscopic basics of the statistical theory of fluids is discussed, as are the classical aspects of deformation and pressure and the laws of conservation. The problem of Low-Reynolds-Number Flows will be addressed, its applications to suspensions and porous media explained. A discussion of the aspects of boundary layers, high-velocity flows and instabilities conclude this presentation of incompressible fluid hydrodynamics. The present book provides a thorough introduction into the topic from a primarily physical point of view and will be a useful textbook and reference work for graduate students, lecturers and researchers.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 528
Äîáàâëåíà â êàòàëîã: 23.02.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Fluids see also "Ideal fluids" "Incompressible "Newtonian
Fluids, Bingham 136—137 166
Fluids, compressible 284—289
Fluids, drops in immiscible fluid 340—341
Fluids, dynamics 128—169
Fluids, equations of motion 140—144
Fluids, highly viscous 313
Fluids, layer thickness 292—293
Fluids, local equations 128—169
Fluids, motion description 89—99
Fluids, motion descriptions 90—91
Fluids, non-barotropic 286—288
Fluids, non-Newtonian 136—140
Fluids, oscillating flows 155—160
Fluids, particle trajectories 245—246
Fluids, particles 89—90
Fluids, shear 137—138
Fluids, thixotropic 138
Fluids, time-dependent 138
Fluids, viscoelastic 138—139
Flux, vorticity 283
Forced convection 440
Fourier equation 13
Fourier equation, thermal exchanges 12—14
Free shear layer see "Tangential—velocity discontinuity"
Free surface interface 147
Frictional forces, arbitrary shaped objects 341—343
Frictional forces, cylinders 154—155
Frictional forces, drag 154—155
Frictional forces, flat plates 397
Frictional forces, tubes 154—155
Frictional forces, uniform-velocity motion 341—343
Froude number 198 200—202 207
Gases 24—28 64—67 see "Helium"
Geological motion 312—313
Geophysical applications 157—158
Glacier motion 312—313
Glass beads 374—375
Gradient driven flow 160—163
Hall and Vinen experiment 486—488
Hard-disc models 4—5
Hatchback design 419
Heat, convection 439—440
Heat, diffusion 17—18
Heat, exchange 9 12—14 425—427
Heat, transport 74—76 439—440
Hele-Shaw ceil 368—370
Helium 26—27 99 482—488
Helix, spinning 331—332
Helmholtz equation 289—291
Highly viscous fluids 313
Hill's spherical vortex 293—295
Hooke's law 128
Horizontal temperature gradient 440 453
Horizontal walls, spheres 319—320
Hot-wire anemometers 425—427
Hurricanes 269 270
Hydraulic jumps 197—204
Hydraulic jumps, qualitative properties 197—198
Hydraulic jumps, velocities 203—204
Hydrostatic forces 350
Hypothesis of continuity 89—90
Ideal fluids see also "Laminar boundary layers"
Ideal fluids, boundary conditions 145
Ideal fluids, Euler's equation 143
Ideal fluids, linear surface waves 240—248
Ideal fluids, superfluid helium 482—488
Ideal gases, model applicability 28
Ideal gases, molecular diffusion coefficients 24—27
Ideal gases, thermal diffusivity 27—28
Ideal gases, transport coefficients 24—28
Imbibition 377
Immiscible fluids 340—341 377—382
Impulse 239
Inclined planes/plates 348—349 403
Incompressible fluids 112—114 115
Incompressible fluids, conservation of kinetic energy 177—179
Incompressible fluids, Helmholtz equation 289—291
Incompressible fluids, Newtonian 173
Incompressible fluids, viscosity 177—179
Index of refraction 98—99
Inelastic scattering 45—46 52—55
Infinite extent fluids 338—339
Infinitesimal deformations 106
Inlet effects 387
Instabilities, absolute 83
Instabilities, amplitude variations 453—455
Instabilities, Benard — Marangoni 97 459—462
Instabilities, chaos transition 471—476
Instabilities, comparisons 457
Instabilities, density 465—469
Instabilities, fully developed turbulence 476—481
Instabilities, hydrodynamic 439—481
Instabilities, Kelvin — Helmholtz 462 463—469
Instabilities, large containers 476
Instabilities, onset 446
Instabilities, physical criteria 446—448
Instabilities, Poiseuille flow 469—470
Instabilities, Rayleigh — Benard 443—455
Instabilities, Rayleigh — Taylor 37—40
Instabilities, surface tension 465—469
Instabilities, Taylor — Couette 455—459
Instabilities, threshold calculation 448—452
Instabilities, thresholds 443 444 455—462
Instabilities, transition to chaos 471—476
Instabilities, turbulence 476—481
Instabilities, velocity profiles 470—471
Instabilities, vorticity profiles 470—471
Integral expressions 172—176
Interfacial properties 55 145—146
Interference gratings 126
Invariance, streamlines 320—321
Invasion percolation 379
Inverse analogue of flow 249—251
Inverse siphons 140
Inversion layers 443
Irreversible behaviour 318
Jets, energy conservation 189—194
Jets, exit velocity 192—193
Jets, incident on planes 189—192
Jets, reservoirs 192—194
Joukowski transformation 259—266
Joukowski transformation, complex velocity potential 261—264
Joukowski transformation, corner flow 259
Joukowski transformation, cylinders 262—263
Joukowski transformation, definition 260—261
Joukowski transformation, flow incident/parallel to flat plate 261
Jupiter 88
Katz and Thompson technique 376 378 379
Kelvin — Helmholtz instability 462 463—469
Kelvin's theorem 280—284 414
Kinematic viscosity 62
kinetic energy see also "Conservation of ..."
Kinetic energy, flow far from sphere 344
Kinetic energy, line vortex 276—277
Kinetic energy, vortex rings 307
Knudsen limit 28 90
Kolmogorov energy cascade 297 479 480
Kronecker delta symbol 132
Kutta conditions 264—265
Lagrangian chaos 318
Lagrangian description 90—91
Lambda transition 482
Laminar boundary layers 383—438
Laminar boundary layers, equations of motion 388—393
Laminar boundary layers, external pressure gradients 400—412
Laminar boundary layers, stability 399—400
Laminar flow 73 76
Laminar wakes 432—438
Laminar wakes, cylinders 435
Laminar wakes, drag 435—438
Laminar wakes, far from objects 433—435
Landau model 79—88 454
Landau model, description 83—86
Laplace equations, doubly connected volume 213—214
Laplace equations, superposition of variables 220—221
Laplace equations, variable separation 220—221
Laplace's law 32—35
Large container instabilities 476
Large deformations 106 109—110
Laser anemometry 55 124—125 454
Laws of conservation see "Conservation of ..."
Leap-frog motion 309
Levitation 188 189
Lewis number 74 75
Lift forces, airplane wings 265—266 412
Lift forces, cylinders 225
Lift forces, two dimensional obstacles 231—234
Light scattering 46—52
Line vortex, curved 278—279
Line vortex, example 274—276
Line vortex, kinetic energy 276—277
Line vortex, pairs 300—301
Linear proportionality 325—326
Linear scales 89—90
Linear surface waves, fluid particle trajectories 245—246
Linear surface waves, ideal fluids 240—248
Linear surface waves, solitons 246—248
liquid helium 492—498
Liquids see also "Fluids"
Liquids, diffusive transport 28—31
Liquids, inelastic scattering of light 52—55
Liquids, interfacial properties 55
Liquids, microscopic structure probing 40—42
Liquids, model systems 2—7
Liquids, molecular diffusion coefficients 29—30
Liquids, spectroscopy 40—55
Liquids, state 1—8
Liquids, thermal conductivity 30
Liquids, three-dimensional models 5—7
Liquids, viscosity 67—69
Low velocity motion 312 378—380
Lubrication 347—351
Mach numbers 113 202 313
Macroscopic transport coefficients 8—20
Macroscopic wave function 483
Magnetic field analogues 271—277
Magneto-hydrodynamic forces 285—286
Magnus force 225 234—235 333
Mapping 256—266
Marangoni effect 160—163 322 460 see
Marangoni number see "Benard — Marangoni instability"
Mass boundary layers 420—431
Mass conservation 18—19 110—115 170—171
Mass diffusion 18—20 21—24
Mass transport 73—74
Matrix symmetry 326—327
Meissner effect 271
Mercury porosimetry 375—376 378
Micelles (colloidal aggregates) 37
Microscopic models 64—71
Microscopic objects 312
Molecular diffusion coefficients 24—27 29—30
Molecular Dynamics 69
Momentum transport, characteristics 56
Momentum transport, convective 57—64
Momentum transport, diffusion equations 61—64
Momentum transport, diffusive 57—64
Momentum transport, Reynolds number 71—73 74—75
Momentum transport, shear flow 59—64
Momentum, boundary layers 399
Momentum, conservation 171—176 189—207
Momentum, flux tensors 172—173
Momentum, thickness 399
Momentum, vortex rings 307—310
Moving solid bodies, forces acting 324—333
Moving solid bodies, linear proportionality 325—326
Moving solid bodies, tensor coefficients 328—329
Moving solid bodies, torque acting 324—333
MUDs 137
Multiply connected volume 211—212
Mutually perpendicular planes of symmetry 329—331
Navier — Stokes equation 279 289 290
Navier — Stokes equation, co-ordinate systems 167—169
Navier — Stokes equation, dimensionless form 143—144
Navier — Stokes equation, Newtonian fluids 142—143
Navier — Stokes equation, one-dimensional flow 147—148
Navier — Stokes equation, specific solutions 147—169
Newtonian fluids, energy dissipation 179
Newtonian fluids, incompressible 173
Newtonian fluids, Navier — Stokes equation 142—143
Newtonian fluids, viscous shear stress 134—135
Non-barotropic fluids 286—288
Non-conservative forces 284—289
Non-Newtonian fluids 136—140
Non-Newtonian fluids, time-dependency 138
nozzles 202
Nusselt number 425 427
Oil tanker wakes 87
Optical signal frequencies 123—125
Oscillating flows, geophysical applications 157—158
Oscillating flows, pressure gradients 158—160
Oscillating flows, viscous fluids 155—160
Oseen equation 343—346 432 433—434
Packing systems 6
Parallel flows 73
Parallel flows, sinks 217—218
Parallel flows, sources 217—218
Parallel flows, uniform 215—216
Parallel line vortices 300—305
Parallel planes flow 150—151 158—160
Particles, acceleration 91—93
Particles, anisotropic 97
Particles, definition 89—90
Particles, dressed 237 240
Particles, flowing fluids 69—71
Particles, numerical simulation 69—71
Particles, partially reflecting 127
Particles, reflecting 97
Particles, sedimentation 357—361
Particles, trajectories 69—71 94
Particles, visualisation techniques 96—97
Pathlines 93—95
Peclet number 351—352 355—356
Peclet number, thermal 74 75
Percolation 379
Permeability 366 370—373 380—382
Perpendicular planes of symmetry 329—331
Photo-active substances 50 97—98
Ping-pong strokes 235
Pitot tubes 183—184
Plane oscillating parallel to itself 155—158
Plastic flow modelling 7—8
Poiseuille flow 149—155 175—176 321
Poiseuille flow, instabilities 469—470
Poiseuille flow, law 153—154
Polarography 125 428—431
Polarography, velocity near wall 430—431
Pores, cylindrical 370—373
Pores, geometry 362—364
Pores, size 362
Porosimetry 375—376 378
Porosity 362
Porous media, capillary forces 377—378
Porous media, channels 373—376
Porous media, characteristic parameters 362—365
Porous media, conductivity 375—376
Porous media, cylindrical pores 370—373
Porous media, Darcy's law 366—370
Porous media, flow 361—382
Ðåêëàìà