Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics
Guyon E., Hulin J., Petit L. — Physical Hydrodynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Physical Hydrodynamics

Àâòîðû: Guyon E., Hulin J., Petit L.

Àííîòàöèÿ:

In the course of the last twenty years, teaching and research in fluid mechanics has expanded considerably into the physics and chemistry communities, who in their turn developed new approaches to the teaching of this topic. These approaches are mainly oriented towards the comprehension of fluids of different hierarchies, the development of various experimental tools, and explanations in terms of elementary physical mechanics. Physical Hydrodynamics presents this original approach for the first time. The elementary microscopic basics of the statistical theory of fluids is discussed, as are the classical aspects of deformation and pressure and the laws of conservation. The problem of Low-Reynolds-Number Flows will be addressed, its applications to suspensions and porous media explained. A discussion of the aspects of boundary layers, high-velocity flows and instabilities conclude this presentation of incompressible fluid hydrodynamics. The present book provides a thorough introduction into the topic from a primarily physical point of view and will be a useful textbook and reference work for graduate students, lecturers and researchers.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 528

Äîáàâëåíà â êàòàëîã: 23.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Fluids      see also "Ideal fluids" "Incompressible "Newtonian
Fluids, Bingham      136—137 166
Fluids, compressible      284—289
Fluids, drops in immiscible fluid      340—341
Fluids, dynamics      128—169
Fluids, equations of motion      140—144
Fluids, highly viscous      313
Fluids, layer thickness      292—293
Fluids, local equations      128—169
Fluids, motion description      89—99
Fluids, motion descriptions      90—91
Fluids, non-barotropic      286—288
Fluids, non-Newtonian      136—140
Fluids, oscillating flows      155—160
Fluids, particle trajectories      245—246
Fluids, particles      89—90
Fluids, shear      137—138
Fluids, thixotropic      138
Fluids, time-dependent      138
Fluids, viscoelastic      138—139
Flux, vorticity      283
Forced convection      440
Fourier equation      13
Fourier equation, thermal exchanges      12—14
Free shear layer      see "Tangential—velocity discontinuity"
Free surface interface      147
Frictional forces, arbitrary shaped objects      341—343
Frictional forces, cylinders      154—155
Frictional forces, drag      154—155
Frictional forces, flat plates      397
Frictional forces, tubes      154—155
Frictional forces, uniform-velocity motion      341—343
Froude number      198 200—202 207
Gases      24—28 64—67 see "Helium"
Geological motion      312—313
Geophysical applications      157—158
Glacier motion      312—313
Glass beads      374—375
Gradient driven flow      160—163
Hall and Vinen experiment      486—488
Hard-disc models      4—5
Hatchback design      419
Heat, convection      439—440
Heat, diffusion      17—18
Heat, exchange      9 12—14 425—427
Heat, transport      74—76 439—440
Hele-Shaw ceil      368—370
Helium      26—27 99 482—488
Helix, spinning      331—332
Helmholtz equation      289—291
Highly viscous fluids      313
Hill's spherical vortex      293—295
Hooke's law      128
Horizontal temperature gradient      440 453
Horizontal walls, spheres      319—320
Hot-wire anemometers      425—427
Hurricanes      269 270
Hydraulic jumps      197—204
Hydraulic jumps, qualitative properties      197—198
Hydraulic jumps, velocities      203—204
Hydrostatic forces      350
Hypothesis of continuity      89—90
Ideal fluids      see also "Laminar boundary layers"
Ideal fluids, boundary conditions      145
Ideal fluids, Euler's equation      143
Ideal fluids, linear surface waves      240—248
Ideal fluids, superfluid helium      482—488
Ideal gases, model applicability      28
Ideal gases, molecular diffusion coefficients      24—27
Ideal gases, thermal diffusivity      27—28
Ideal gases, transport coefficients      24—28
Imbibition      377
Immiscible fluids      340—341 377—382
Impulse      239
Inclined planes/plates      348—349 403
Incompressible fluids      112—114 115
Incompressible fluids, conservation of kinetic energy      177—179
Incompressible fluids, Helmholtz equation      289—291
Incompressible fluids, Newtonian      173
Incompressible fluids, viscosity      177—179
Index of refraction      98—99
Inelastic scattering      45—46 52—55
Infinite extent fluids      338—339
Infinitesimal deformations      106
Inlet effects      387
Instabilities, absolute      83
Instabilities, amplitude variations      453—455
Instabilities, Benard — Marangoni      97 459—462
Instabilities, chaos transition      471—476
Instabilities, comparisons      457
Instabilities, density      465—469
Instabilities, fully developed turbulence      476—481
Instabilities, hydrodynamic      439—481
Instabilities, Kelvin — Helmholtz      462 463—469
Instabilities, large containers      476
Instabilities, onset      446
Instabilities, physical criteria      446—448
Instabilities, Poiseuille flow      469—470
Instabilities, Rayleigh — Benard      443—455
Instabilities, Rayleigh — Taylor      37—40
Instabilities, surface tension      465—469
Instabilities, Taylor — Couette      455—459
Instabilities, threshold calculation      448—452
Instabilities, thresholds      443 444 455—462
Instabilities, transition to chaos      471—476
Instabilities, turbulence      476—481
Instabilities, velocity profiles      470—471
Instabilities, vorticity profiles      470—471
Integral expressions      172—176
Interfacial properties      55 145—146
Interference gratings      126
Invariance, streamlines      320—321
Invasion percolation      379
Inverse analogue of flow      249—251
Inverse siphons      140
Inversion layers      443
Irreversible behaviour      318
Jets, energy conservation      189—194
Jets, exit velocity      192—193
Jets, incident on planes      189—192
Jets, reservoirs      192—194
Joukowski transformation      259—266
Joukowski transformation, complex velocity potential      261—264
Joukowski transformation, corner flow      259
Joukowski transformation, cylinders      262—263
Joukowski transformation, definition      260—261
Joukowski transformation, flow incident/parallel to flat plate      261
Jupiter      88
Katz and Thompson technique      376 378 379
Kelvin — Helmholtz instability      462 463—469
Kelvin's theorem      280—284 414
Kinematic viscosity      62
kinetic energy      see also "Conservation of ..."
Kinetic energy, flow far from sphere      344
Kinetic energy, line vortex      276—277
Kinetic energy, vortex rings      307
Knudsen limit      28 90
Kolmogorov energy cascade      297 479 480
Kronecker delta symbol      132
Kutta conditions      264—265
Lagrangian chaos      318
Lagrangian description      90—91
Lambda transition      482
Laminar boundary layers      383—438
Laminar boundary layers, equations of motion      388—393
Laminar boundary layers, external pressure gradients      400—412
Laminar boundary layers, stability      399—400
Laminar flow      73 76
Laminar wakes      432—438
Laminar wakes, cylinders      435
Laminar wakes, drag      435—438
Laminar wakes, far from objects      433—435
Landau model      79—88 454
Landau model, description      83—86
Laplace equations, doubly connected volume      213—214
Laplace equations, superposition of variables      220—221
Laplace equations, variable separation      220—221
Laplace's law      32—35
Large container instabilities      476
Large deformations      106 109—110
Laser anemometry      55 124—125 454
Laws of conservation      see "Conservation of ..."
Leap-frog motion      309
Levitation      188 189
Lewis number      74 75
Lift forces, airplane wings      265—266 412
Lift forces, cylinders      225
Lift forces, two dimensional obstacles      231—234
Light scattering      46—52
Line vortex, curved      278—279
Line vortex, example      274—276
Line vortex, kinetic energy      276—277
Line vortex, pairs      300—301
Linear proportionality      325—326
Linear scales      89—90
Linear surface waves, fluid particle trajectories      245—246
Linear surface waves, ideal fluids      240—248
Linear surface waves, solitons      246—248
liquid helium      492—498
Liquids      see also "Fluids"
Liquids, diffusive transport      28—31
Liquids, inelastic scattering of light      52—55
Liquids, interfacial properties      55
Liquids, microscopic structure probing      40—42
Liquids, model systems      2—7
Liquids, molecular diffusion coefficients      29—30
Liquids, spectroscopy      40—55
Liquids, state      1—8
Liquids, thermal conductivity      30
Liquids, three-dimensional models      5—7
Liquids, viscosity      67—69
Low velocity motion      312 378—380
Lubrication      347—351
Mach numbers      113 202 313
Macroscopic transport coefficients      8—20
Macroscopic wave function      483
Magnetic field analogues      271—277
Magneto-hydrodynamic forces      285—286
Magnus force      225 234—235 333
Mapping      256—266
Marangoni effect      160—163 322 460 see
Marangoni number      see "Benard — Marangoni instability"
Mass boundary layers      420—431
Mass conservation      18—19 110—115 170—171
Mass diffusion      18—20 21—24
Mass transport      73—74
Matrix symmetry      326—327
Meissner effect      271
Mercury porosimetry      375—376 378
Micelles (colloidal aggregates)      37
Microscopic models      64—71
Microscopic objects      312
Molecular diffusion coefficients      24—27 29—30
Molecular Dynamics      69
Momentum transport, characteristics      56
Momentum transport, convective      57—64
Momentum transport, diffusion equations      61—64
Momentum transport, diffusive      57—64
Momentum transport, Reynolds number      71—73 74—75
Momentum transport, shear flow      59—64
Momentum, boundary layers      399
Momentum, conservation      171—176 189—207
Momentum, flux tensors      172—173
Momentum, thickness      399
Momentum, vortex rings      307—310
Moving solid bodies, forces acting      324—333
Moving solid bodies, linear proportionality      325—326
Moving solid bodies, tensor coefficients      328—329
Moving solid bodies, torque acting      324—333
MUDs      137
Multiply connected volume      211—212
Mutually perpendicular planes of symmetry      329—331
Navier — Stokes equation      279 289 290
Navier — Stokes equation, co-ordinate systems      167—169
Navier — Stokes equation, dimensionless form      143—144
Navier — Stokes equation, Newtonian fluids      142—143
Navier — Stokes equation, one-dimensional flow      147—148
Navier — Stokes equation, specific solutions      147—169
Newtonian fluids, energy dissipation      179
Newtonian fluids, incompressible      173
Newtonian fluids, Navier — Stokes equation      142—143
Newtonian fluids, viscous shear stress      134—135
Non-barotropic fluids      286—288
Non-conservative forces      284—289
Non-Newtonian fluids      136—140
Non-Newtonian fluids, time-dependency      138
nozzles      202
Nusselt number      425 427
Oil tanker wakes      87
Optical signal frequencies      123—125
Oscillating flows, geophysical applications      157—158
Oscillating flows, pressure gradients      158—160
Oscillating flows, viscous fluids      155—160
Oseen equation      343—346 432 433—434
Packing systems      6
Parallel flows      73
Parallel flows, sinks      217—218
Parallel flows, sources      217—218
Parallel flows, uniform      215—216
Parallel line vortices      300—305
Parallel planes flow      150—151 158—160
Particles, acceleration      91—93
Particles, anisotropic      97
Particles, definition      89—90
Particles, dressed      237 240
Particles, flowing fluids      69—71
Particles, numerical simulation      69—71
Particles, partially reflecting      127
Particles, reflecting      97
Particles, sedimentation      357—361
Particles, trajectories      69—71 94
Particles, visualisation techniques      96—97
Pathlines      93—95
Peclet number      351—352 355—356
Peclet number, thermal      74 75
Percolation      379
Permeability      366 370—373 380—382
Perpendicular planes of symmetry      329—331
Photo-active substances      50 97—98
Ping-pong strokes      235
Pitot tubes      183—184
Plane oscillating parallel to itself      155—158
Plastic flow modelling      7—8
Poiseuille flow      149—155 175—176 321
Poiseuille flow, instabilities      469—470
Poiseuille flow, law      153—154
Polarography      125 428—431
Polarography, velocity near wall      430—431
Pores, cylindrical      370—373
Pores, geometry      362—364
Pores, size      362
Porosimetry      375—376 378
Porosity      362
Porous media, capillary forces      377—378
Porous media, channels      373—376
Porous media, characteristic parameters      362—365
Porous media, conductivity      375—376
Porous media, cylindrical pores      370—373
Porous media, Darcy's law      366—370
Porous media, flow      361—382
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå