Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Barber J.R. — Elasticity
Barber J.R. — Elasticity



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Elasticity

Àâòîð: Barber J.R.

Àííîòàöèÿ:

This is a first year graduate textbook in Linear Elasticity. It is written with the practical engineering reader in mind, dependence on previous knowledge of Solid Mechanics, Continuum Mechanics or Mathematics being minimized. Most of the text should be readily intelligible to a reader with an undergraduate background of one or two courses in elementary Mechanics of Materials and a rudimentary knowledge of partial differentiation. Emphasis is placed on engineering applications of elasticity and examples are generally worked through to final expressions for the stress and displacement fields in order to explore the engineering consequences of the results.
The Topics covered were chosen with a view to modern research applications in Fracture Mechanics, Composite Materials, Tribology and Numerical Methods. Thus, significant attention is given to crack and contact problems, problems involving interfaces between dissimilar media, thermo elasticity, singular asymptotic stress fields and three-dimensional problems.

This second edition includes new chapters on antiplane stress systems, Saint-Venant torsion and bending and an expanded section on three-dimensional problems in spherical and cylindrical coordinate systems, including axisymmetric torsion of bars of non-uniform circular cross-section.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Second edition

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 410

Äîáàâëåíà â êàòàëîã: 09.04.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abel integral equations      364—367 374 376 378 387—388
Abel integral equations, inversion      366—367
Airy stress function      42—44 79—81 98 123 201—202 281
Alternating tensor      17 25
Antiplane shear (antiplane strain)      209—217
Asymptotic methods      141—152
Auxiliary solution      395
Axisymmetric problems      313—322 327—334 341—350
Axisymmetric problems, plane thermoelastic      281—282
Axisymmetric problems, torsion      341—350
Bending      51—55 222 239
Betti's theorem      394—404
Biharmonic equation      44 49 73 87 99 137 202
Body force      23 43 79—96 187 202 259—260 282
Bonded interfaces      151—151 381—392
boundary conditions      5 210 241
Boundary conditions, global      296 374 383 384
Boundary conditions, mixed      352 359 374 384
Boundary conditions, weak      36 53 55—57 66 93 313 319 331
Boussinesq potentials      263—266
Boussinesq problem      295—298
Bubble model      190—191
bulk modulus      20
Burgers' vector      189
Carter's problem      177—179
Cartesian tensors      8
Cattaneo's problem      174—177
Cauchy integral equations      163 196 389
Centre of compression      292
Centre of dilatation      292
Centre of rotation      347
Change in volume      395
Circular cylinder      242—244 281—282 313—319 322—323
Circular disk      88 97 202
Circular hole      97 101—104 108—109
Circular plates      319—322
Circular sector      153
Climb dislocation      189 195
Closed sections      231—232
Closure conditions      192—193 196
Coefficient of friction      173
Collins' method      360—369
Compatibility equations      24—28 81
Completeness      67 75 255—259
Complex variable formulation      272—276
Complex variable formulation, axisymmetric complex potentials      360—365
Concentrated force      157—161 185—187 212 293—297
Conical bar      330—336 346—347
Conservative vector fields      80
Constraint equations      50
Contact problems      81 151 162—183 269 351—357 397—400
Contact problems, frictionless contact      162—169 172 269 351—357 397—400
Contact problems, unilateral inequalities      167 353
Continuity of displacement      119 123 186 368 374 387
Cooerdinate transformation      7—11 15—18 210
Corrective solution      35—36 71—77 102 175 178 195—197 329 373—376 383—386
Coulomb friction      173 364
Crack opening displacement      197 375 390
Cracks      147 150 194—197 284 373—392
Creep velocity      177 179
Curved beams      123—136
Cylindrical cantilever      242—244 322—323
D'Alembert's principle      82
Degeneracy      104—106
Degeneracy, special solutions      104—106 129—130 133—135
Dilatation      19 20
Dilatation, centre of      292
Dilatation, surface dilatation      297
Dislocation derivatives      193
Dislocations      188—193 204 215—216
Displacement      11
Displacement gradient      162
Displacement, calculation from stress components      111—117
Displacement, notation for      11
Displacement, rigid-body displacements      12 113—114 116 162 163
Displacement, single-valued displacements      26 119 123 185—187
Dundurs' constants      45 172 385 386
Dundurs' theorem      205—206
Eigenfunction expansion      75 77 144—146 153
eigenvalue problems      74—77 127—128 141—152
Elastodynamics      83
Elliptical bar      226
End effects      71—77 348—349
Energy release rate      391 392
Equilibrium equations      23—24 29 89 251 252 279 283
Flamant solution      157—161 185
Flat punch indentation      165—166 185
Fourier series methods      62—66 99—101 164—165 229—230 245—246 302
Fourier transform methods      66—67 152
Fracture mechanics      193—194 391—392
Fracture toughness      194
Fredholm integral equations      389 391
Friction      173
Galerkin vector      252—254
Gap function      170—172 397
Glide dislocation      189
Global boundary conditions      276 296 377 383—384
Gravitational loading      12—14 79 82
Green — Collins representation      360—365
Green's functions      144 160 161 170 185 192 352 396
Griffith fracture theory      194 391—392
Gross slip      176
Half-plane      141 147 159—163
Half-plane, surface displacements      159—162
Half-space      269 272 284 295—297 351 383
Half-space, coupling between normal and tangen-tial effects      172 386
Hankel transform      359—360
Heat conduction      203
Hertzian contact      167—169 172 367—368
History-dependence      173—179
Hooke's law      3 13 18—20 201
Hydrostatic stress      8 396
Inclusions      121 193
Incompressible material      20 172
Index notation      6
Inertia forces      82
Integral equations      163 196 352 360 364 389
Interface crack      381—392
Interface crack, contact solution      390—391
Irrotational vector field      80 252
Kelvin problem      185—187 293—295
Kronecker delta      20
Lame's constants      19
Legendre functions      305 307 343
Legendre polynomials      298 303 308
Legendre's equation      303
Love's strain potential      254 265
Maxwell's theorem      393—394
Mellin transform      152
Membrane analogy      227
Michell's solution      106 107 117 118
Microslip      176 179
Mindlin's problem      174—177
mixed boundary-value problem      352—353 359—371 374 376 384—386
Mode mixity      390
Mohr's circle      8
Multiply-connected bodies      26—28 119 204 231—232 281
Notches      141—142 144
Oscillatory singularities      see “Singular stress fields”
Papkovich — Neuber solution      254—255 264—265 272 275
Particular solution      87 88
Path-independent integrals      26 80
Penny-shaped crack      373—379
Penny-shaped crack, at an interface      386—391
Penny-shaped crack, in tension      373—375
Penny-shaped crack, obstructing heat conduction      375—379
Phase transformation      292
Plane crack in tension      194—197
Plane strain      33—36
Plane strain, relation to plane stress      38—39 202
Plane strain, solution in complex variables      272—275
Plane stress      36—38
Plane stress, generalized plane stress      38
Poisson's ratio      18
Polynomial solutions      49—62 71
Prandtl's stress function      224—225 240
Process zone      194 392
Reciprocal theorem      393—404
Rectangular bar      211—212 229—231 244—246
Rectangular beams      49—70 85—87 90—92 111—115
Rectangular beams, end conditions      71—77 113—115 399
Rectangular beams, shear deflection      115
Recurrence relations      303 307 309—310
Rigid-body displacements      see “Displacements”
Rolling contact      177—179
Rotation of a line      14—15
Rotation vector      17 252
Rotational acceleration      88—93
Saint — Venant's principle      36 71 221
Screw dislocation      213—214
Self-equilibrated tractions      35—35 71
Self-similarity      157 185 294 295
Separated-variable solutions      67 73 77 157
Shift      173
Simple radial distribution      159
Singular stress fields      142—144 149—150 166 185 191 291—300 382
Singular stress fields, oscillatory singularities      389 391
SLIP      174—179
Source solution      291 294—295 362
Specific heat      203
Sphere      296 327—328
Spherical harmonics      301—311
Spherical hole      329—330
Spherical polar angle      267
STICK      174—179
Strain energy      143
Strain potential      251 255 264
Strain suppression      283
Strain transformation relations      18
Strain, notation for      12
Strain, shear strain, definition      17—18
Strain, tensile strain      13
Strain-displacement relations      13 18
Strain-displacement relations, in polar coordinates      99
Stress concentration factors      103 109 330
Stress concentrations      101—104 108—109 125 142 150 192 329—330
Stress intensity factors      194 197 375 379 389 390
Stress transformation relations      8 91
Stress, equivalent tensile stress      11
Stress, hydrostatic stress      8 396
Stress, mean stress      20
Stress, notation for      4
Stress, principal stress      8 10—11
Stress, shear stress      5
Stress-strain relations      18—20 201
Summation convention      6
Surface dilatation      297
Surface displacements      296 351
Surface energy      194
Symmetry      60 63 74 88—89 140 145 272 316 378 384
Thermal capacity      203
thermal conductivity      203
Thermal diffusivity      203
Thermal distortivity      205 287
Thermal expansion coefficient      201
Thermoelastic displacement potential      279—281 292
Thermoelastic plane stress      284
Thermoelasticity      201—207 279—289
Thermoelasticity, axisymmetric stress in the cylinder      281—282 311—319
Thermoelasticity, heat flow obstructed by a crack      375—379
Thermoelasticity, plane problems      201—207 281—282
Thermoelasticity, steady-state temperature      204—206 283—287
Thermoelasticity, thick plate      284
Thermoelasticity, Williams' solution      283—284
Thin-walled sections      227—228
Tilted punch      397—399
Torsion      223—237 242 341—350
Torsional rigidity      226
Transformation of coordinates      see “Coordinate transformation”
Transverse shear      239—248
Twist      223—224
Uniform rotation      85—87
Unilateral contact      see “Contact problems — unilateral inequalities”
Uniqueness      255—259
Vector notation      7
Von Mises stress      11
Wedge problems      137—156
Williams' asymptotic method      141—152
Young's modulus      18
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå