Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Bubbles, drops, and particles
Àâòîðû: Clift R., Grace J.R., Weber M.E.
Àííîòàöèÿ: A vast body of literature dealing with bubbles, drops, and solid particles has
grown up in engineering, physics, chemistry, geophysics, and applied mathematics. The principal objective of this book is to give a comprehensive critical review of this literature as it applies to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. We have tried primarily to provide a reference text for research workers concerned with multiphase phenomena and a source of information, reference, and background material for engineers, students, and teachers who must deal with these phenomena in their work. In many senses, bubbles and drops are the chemical engineer's elementary particles. Inevitably the book has a bias toward the concerns of chemical
engineers since each of the authors is a chemical engineer. However, we have attempted to keep our scope sufficiently broad to be of interest to readers from other disciplines. It became clear to us while preparing this book that workers in one area are commonly oblivious to advances in other fields. If this book does no more than bring literature from other fields to the attention of research workers, it will have accomplished part of our purpose.
ßçûê:
Ðóáðèêà: Ôèçèêà /Êëàññè÷åñêàÿ ôèçèêà /Ìåõàíèêà æèäêîñòè è ãàçà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1978
Êîëè÷åñòâî ñòðàíèö: 380
Äîáàâëåíà â êàòàëîã: 19.06.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Accelerated motion 264 285—318 335 346
Acceleration modulus, definition of 285
Acceleration modulus, influence of 296
Accommodation coefficient 273
Accommodation coefficient, thermal 278
Accumulation of surfactants 36 38 195
Added mass coefficient 292 296 316 317 323 325
Added mass during bubble formation 324 325
Added mass in arbitrarily accelerated motion 316
Added mass, conditions for neglect of 275 300—301 309 317
Added mass, fluid spheres 295 304 305
Added mass, rigid spheres 275 287 291 296 297
Added mass, spheroids 292—293
Adjusted sphere 274—275
Aerodynamic heating 277 278
Aging see Accumulation of surfactants
Aiding flow 256—259
Amplitude of imposed oscillatory flow 309 314
Amplitude of natural oscillations of fluid particles 188 191 197
Amplitude of secondary motion of rigid particles 103 115 148—149 156
Amplitude ratio 264—265 307—308 310—311 313
Analogy between heat and mass transfer 11 12
Angular velocity 259 261
Annular channels 238
Arbitrarily shaped particles conductance 90
Arbitrarily shaped particles, drag at low Reynolds number 87—88
Arbitrarily shaped particles, motion at low Reynolds number 70—71 87—88
Arbitrarily shaped particles, natural convection 254—255
Arbitrarily shaped particles, terminal velocity 157—162
Arbitrarily shaped particles, transfer at low Pec let number 91
Arbitrarily shaped particles, transfer with variable concentration 93—94
Archimedes number 113f 206
Aspect ratio see also Deformation
Aspect ratio of bubbles and drops in contaminated liquids 181—182
Aspect ratio of bubbles and drops in pure liquids 182—183
Aspect ratio of drops in air 170 183—184
Aspect ratio of spheroids 75 143 147 294
Aspect ratio, definition of 17 75 80
Asymptotic expansions see Matched asymptotic expansions
Atomization see Formation of drops
Attached eddy see Wakes
Axisymmetric particles 16—17
Axisymmetric particles, drag at low Reynolds number 83—85
Axisymmetric particles, in free fall 70—73
Axisymmetric particles, in shear field 263
Axisymmetric particles, rotation 260 263
Basset history term see History effects
Bernoulli's equation 7 338
Best number 113
Biot number 62 94
Bodies of revolution see Axisymmetric particles
Boiling heat transfer 236 337
Bond criterion see Surface-active impurities
Bond number 26f
boundary conditions 3 4 9 30—31
Boundary conditions, concentration 10 12 13 47 52 88 117
Boundary conditions, stress 5 31 39 42 44 286
Boundary conditions, temperature 11 12
Boundary conditions, velocity 4 31 98 222 252 286
Boundary layer approximation 9—10. See also Thin concentration boundary layer
Boundary layer approximation for fluid spheres 130—134 135—136
Boundary layer approximation for rigid spheres 50 99 120f
Boundary layer approximation, application to natural convection 252 255 258
Boundary layer separation in natural and mixed convection 251 257
Boundary layer separation on arbitrarily shaped particles 162
Boundary layer separation on cylinders 154
Boundary layer separation on fluid particles 126 132 134 175 185 210
Boundary layer separation on rigid spheres 99 100 102 107—109 222 245 263
Boundary layer separation on spheroids 143
Boundary layer separation, effect of fluid compressibility on 275
Boundary layer separation, effect of freestream turbulence on 262 268
Boundary layer separation, effect of rotation on 262 263
Boundary layer separation, effect of surface roughness on 245
Boundary layer separation, effect of surfactants on 135 175
Boundary layer stripping 346
Boundary layers, concentration 11 13 92 246
Boundary layers, interaction with shock waves 275
Boundary layers, internal 132 205
Boundary layers, momentum 9—10
Boundary layers, temperature 10 246
Boundary layers, thickness 99 100 254 272
Boundary layers, transition 109 120 245 262 266 316
Boundary layers, turbulent 109 121 245 269
Boussinesq approximation 249
Breakup of bubbles 339—347
Breakup of bubbles by impingement 347
Breakup of bubbles by Rayleigh — Taylor instability 339—342
Breakup of bubbles by resonance 188 342
Breakup of bubbles by velocity gradients 261 342—344
Breakup of bubbles in oscillating flow fields 314
Breakup of bubbles in stagnant media 339—342
Breakup of bubbles in turbulent flow fields 269 344—345
Breakup of bubbles, maximum stable size 341—342 344
Breakup of drops 339—347
Breakup of drops by collision 346—347
Breakup of drops by electric fields 346
Breakup of drops by impingement 347
Breakup of drops by Rayleigh — Taylor instability 339—342
Breakup of drops by resonance 188 342
Breakup of drops by velocity gradients 261 342—344
Breakup of drops in air 171 341—342
Breakup of drops in air blasts 346
Breakup of drops in stagnant media 171 203 339—342
Breakup of drops in turbulent flow fields 269 342 344—345
Breakup of drops, falling in gases 171 203 341—342
Breakup of drops, maximum stable size 341—342 344
Breakup of liquid threads 333
Brownian motion 70 71 272
Buoyancy 255 312 324 333.
Capacitance 88—89
Capacitance number 329
Capillary pressure see Surface tension pressure increment
Cavitation 337 338
Chamber volume, effect on bubble formation 322 329 330
Characteristic lengths 92 162 163 254
Circularity 20
Circularity, modified 80
Circularity, operational 21
Cluster of particles 164
Compressibility effects 271—272 275—278 338
Compressibility effects on drag 275—278
Compressibility effects on heat transfer 279
Concentration contours 118 137 150—151
Conductance factor 90
Conductance for arbitrary axisymmetric shapes 90
Conductance for particles of various shapes 89
Conductance for slender bodies 90
Conductance, definition 89
Cones in creeping flow 74 83
Cones, compressibility effects 275
Cones, free fall at higher Reynolds number 165
Cones, shape classification 17
Contact angle 22 324 338
Contamination see Surface-active impurities
Continuity equation, overall 3 4 9 13 14 97 250
Continuity equation, species 10 12 47 52 88 116 250
Continuous phase, definition of 2
Coriolis forces 263
Creeping flow 8—9
Creeping flow, accelerating fluid sphere 295
Creeping flow, disk released from rest 294
Creeping flow, drag on accelerating rigid sphere 287—291
Creeping flow, natural convection 256—257
Creeping flow, noncontinuum flow 273
Creeping flow, panicle in oscillating fluid 286—287 307—309
Creeping flow, particle orientation in 18
Creeping flow, particle rotation and fluid shear 259—261
Creeping flow, relevance at nonzero Reynolds numbers 88 297 318
Creeping flow, rigid axisymmetric particles 73 83—85
Creeping flow, rigid spheres released from rest 288—292
Creeping flow, rigid spheroids released from rest 292—294
Creeping flow, slender bodies 82
Creeping flow, spheres in steady motion 30—35 47—51
Creeping flow, spheroids in steady motion 75—77
Creeping flow, wall effects 222 223—226 231—232
Critical range of flow 110 114 223 267 268 316
Critical transition, effect of acceleration on 316
Critical transition, effect of freestream turbulence 266—267
Critical transition, effect of rotation 262—263
Critical transition, effect of surface roughness 244—245 262 263
Critical transition, spheres 109—110 223
Critical transition, spheroids 143
Crossflow 256—258
Cubes 17
Cubes, compressibility effects 278
Cubes, drag at low Reynolds number 87
Cubes, noncontinuum effects 275
Cubes, orientation in free fall 165
Cubes, transfer 89 164
Curvilinear trajectories 316
cylinders 17
Cylinders, axial resistance 79—80 83
Cylinders, compressibility effects on heat transfer 278—279
Cylinders, drag 74 79—80 87 153—156 160—161
Cylinders, freestream turbulence effects 269—271
Cylinders, in free fall or rise 153—156
Cylinders, in shear field 260
Cylinders, natural convection 258 278
Cylinders, noncontinuum effects 275 278
Cylinders, rotation 260 264
Cylinders, roughness effects 245
Cylinders, secondary motion 154—156
Cylinders, time variation of concentration 94
Cylinders, transfer 89 90 93 94 156—157 163 164
Cylinders, treated as slender bodies 82 90
D'Alembert's paradox 8
Davies and Taylor equation 205
Deformation 32. See also Aspect ratio Shapes
Deformation due to shear field 263 342—344
Deformation due to turbulence 269
Deformation due to wall effects 231 233 235 240
Deformation during bubble formation 324
Deformation during drop formation 331
Deformation of accelerating drops 305
Deformation of air bubbles in water 172
Deformation of water drops in air 170
Deformation, onset of 44 125 179—180 305
Degree of circulation 41
Density ratio, effect in accelerated motion 285 288—291 293—295 298 309
Density ratio, effect on secondary motion of rigid particles 115 143 154 156
Density ratio, effect on terminal velocity and drag 114—116 156 161 162
Diameter, equilibrium 337—338
Diameter, equivalent 18
Diameter, hydraulic 226 236
Diameter, hydraulic equivalent 77 79
Diameter, image-shearing 18
Diameter, projected area 18 21 159
Diameter, statistical intercept 18 21
Diffusion equation see Continuity equation species
Dilation see Oscillation of bubbles and drops
Dimple see Indentation on base of bubbles and drops
disks 17
Disks, accelerated motion of 294
Disks, drag 74 76 80 145—148 160
Disks, free fall 148—149
Disks, motion at higher Reynolds number 143—149
Disks, motion at low Reynolds number 74
Disks, rotation 260
Disks, secondary motion 143 148—149
Disks, transfer 91 152—153 163
Disks, wakes 143—144
Dispersed phase, definition of 2
Displacement modulus 285 297
Drag See also Drag coefficient Form Skin
Drag coefficient for air bubbles in water 171
Drag coefficient for curvilinear trajectory 316
Drag coefficient for cylinders 154—156
Drag coefficient for disks 145—147
Drag coefficient for fluid spheres 33 130—134
Drag coefficient for rigid spheres 35 43 99 103 110—113
Drag coefficient for rigid spheroids 78 146—147
Drag coefficient in accelerated motion 305 315 318
Drag coefficient, compressibility effects 275—278
Drag coefficient, free convection effects 256—258
Drag coefficient, free-molecule 276
Drag coefficient, inviscid 277
Drag coefficient, shear and rotation influence 260—263
Drag coefficient, spherical-cap fluid particles 206
Drag coefficient, turbulence effects 266—268
Drag coefficient, wall effects 226—227
Drag coefficient, water drops in air 170—171 341—342
Drag during bubble formation 324 326
Drag during drop formation 333
Drag factor (wall effects) 223
Drag in accelerated motion 287 296 312 314 315—316
Drag ratio (nonspherical particles) cylinders at low Reynolds number 79—81
Drag ratio (nonspherical particles) cylinders at low Reynolds number, definition 69
Drag ratio (nonspherical particles) cylinders at low Reynolds number, orthotropic particles at low Reynolds number 85—87
Drag ratio (nonspherical particles) cylinders at low Reynolds number, spherically isotropic particles at low Reynolds number 87
Drag ratio (nonspherical particles) cylinders at low Reynolds number, spheroids 74—77 147—148 292
Drag, calculation from stream function 73—74
Drift 31 35 42 74f
Eddies see Wakes Turbulent
Ellipsoid of revolution see Spheroids
Ellipsoidal fluid particles 23—26 169—199 232—233 240
Ellipsoidal rigid particles 75 82.
Ellipsoidal-cap bubbles see Spheroidal-cap fluid particles
Elongation ratio 19
Enclosed vertical tubes 239—240
End effects 225
Energy dissipation 11 132 189.
energy equation 3 11 12 303
Energy spectrum of turbulence 268 269 344—345
Entrainment see Drift
Eotvos number, definition 26
Eotvos number, use in correlating shapes of fluid particles 181
Equivalent sphere 18 69 158
Error distribution solutions see Galerkin's method
Euler equation 7
External resistance to transfer See also the individual shape
External resistance to transfer, effect of surface-active impurities 38 63—66 192 194—196 214 216
External resistance to transfer, ellipsoidal fluid particles 192—197
Extraction efficiency 54
Fall from rest see Initial motion
Falling sphere viscometry 223 228
Fibres 74. See also Slender bodies
Flatness ratio 19
Flattening See Deformation
Floating bubbles and drops 22
Flow visualization for flow past spheres 103—105 109 222 261
Flow visualization for flow past spheroids and disks 143
Flow visualization of boundary layer separation 109 266f
Flow visualization of forming bubbles and drops 323 332
Flow visualization of internal circulation 36—38 189 210
Flow visualization of wake motion 103 109 184—185 211 212
Flow visualization, evaluation of 264
Flow visualization, hydrogen bubble technique 212 339
Flow visualization, mixed free and forced convection 258
Fluctuations see Oscillations
Fluid particles, definition of 2
Fluidized beds, breakup of bubbles in 339 346
Fluidized beds, bubble formation and initial motion 305f 329—330
Fluidized beds, bubble properties in 203 216—218
Fluidized beds, slug properties in 236 237f
Fore-and-aft symmetry of flow fields 8 30 31 40 42 43 100 222
Fore-and-aft symmetry of fluid particles 23 26 170
Fore-and-aft symmetry of rigid particles 17 72 83 164
Form drag 99
Form drag for fluid particles 33 130
Form drag for rigid spheres at higher Reynolds number 103 108 110
Ðåêëàìà