Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Bubbles, drops, and particles

Àâòîðû: Clift R., Grace J.R., Weber M.E.

Àííîòàöèÿ:

A vast body of literature dealing with bubbles, drops, and solid particles has
grown up in engineering, physics, chemistry, geophysics, and applied mathematics. The principal objective of this book is to give a comprehensive critical review of this literature as it applies to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. We have tried primarily to provide a reference text for research workers concerned with multiphase phenomena and a source of information, reference, and background material for engineers, students, and teachers who must deal with these phenomena in their work. In many senses, bubbles and drops are the chemical engineer's elementary particles. Inevitably the book has a bias toward the concerns of chemical
engineers since each of the authors is a chemical engineer. However, we have attempted to keep our scope sufficiently broad to be of interest to readers from other disciplines. It became clear to us while preparing this book that workers in one area are commonly oblivious to advances in other fields. If this book does no more than bring literature from other fields to the attention of research workers, it will have accomplished part of our purpose.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êëàññè÷åñêàÿ ôèçèêà/Ìåõàíèêà æèäêîñòè è ãàçà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1978

Êîëè÷åñòâî ñòðàíèö: 380

Äîáàâëåíà â êàòàëîã: 19.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Secondary motion, ellipsoidal bubbles and drops      185—188
Secondary motion, in oscillating fluid      311
Secondary motion, oblate spheroids in free fall      150
Secondary motion, spheres in free fall      114—116
Secondary motion, spherical-cap bubbles      211—212
Secondary motion, wall effects on      233
Separation      see Boundary layer separation
Separation angle      99 103 109 117 119—121 126—127
Sessile drops and bubbles      22
Settling factor      69 79
Settling velocity      see Terminal velocity
Shape factors      17—22 83
Shape oscillations      see Oscillation of bubbles and drops
Shapes      16—22 see Aspect
Shapes, freely moving fluid particles      26—28 179—183 235 237
Shapes, static bubbles and drops      22
Shapes, water drops in air      170 183—184
Shear field      260—261 342—344
Sherwood number, cylinders at low Reynolds and Peclet numbers      93
Sherwood number, definition      12 191—192
Sherwood number, ellipsoidal fluid particles      191—194
Sherwood number, fluid spheres      50—51 135 137
Sherwood number, in oscillating fluid      312—313
Sherwood number, local      49—50 93 117—121 150—151
Sherwood number, natural convection      252—259
Sherwood number, rigid spheres at higher Reynolds number      117—124
Sherwood number, rigid spheres at low Reynolds number      47—53 117
Sherwood number, simultaneous heat and mass transfer      255
Sherwood number, sphere subject to rotation      263—264
Sherwood number, wall effects      229—231
Shock waves      275 346
Simultaneous heat and mass transfer      255 258—259
Sinusoidal fluid motion      264 286 304—310 312
Skin friction      99
Skin friction for fluid particles      33 130
Skin friction for rigid spheroids      77 78 146—147 293
Skin friction for spheres at higher Reynolds number      103 109 110
Skin friction for spheres at low Reynolds number      33f 35
Skirts      208—209
Skirts, definition of      26
Skirts, formation      204 208
Skirts, influence on transfer      216
Skirts, influence on wakes      210
Skirts, length      209
Skirts, occurrence      27 208
Skirts, thickness      208—209
Skirts, wall effects      234—235
Slender bodies      74 80 82 90.
Slip flow regime      116 272—275 278
Slug flow      26 236—239
Spectral distribution      see Energy spectrum of turbulence
Spheres, accelerated motion      286—291 295—304 306—316
Spheres, compressibility effects      275—278 279
Spheres, flow at higher Reynolds number      97—116 125—135
Spheres, flow at low Reynolds number      30—66
Spheres, freestream turbulence effects      265—271
Spheres, in shear field      260—262
Spheres, natural convection      251—254 255 257—258 278
Spheres, noncontinuum effects      271—274 278—279
Spheres, numerical solutions for      46 97—99 121 301 303—304
Spheres, rotation      260—264
Spheres, roughness effects      244—245
Spheres, steady-state transfer with stagnant continuous phase      47 89
Spheres, transfer at higher Reynolds number      117—125 135—137 163 164
Spheres, transfer at low Reynolds number      46—66 117
Spheres, transfer with unsteady external resistance      51—53 137
Spheres, transfer with variable particle concentration      53—63 94 137
Spheres, wall effects      221—228 229—231 231—232 240
Spherical cap rigid particles      74 210—211
Spherical fluid particles      see Spheres
Spherical-cap bubbles and drops      26 203—219 234—236 240
Spherical-cap bubbles and drops, external flow field      212
Spherical-cap bubbles and drops, initial motion of      305—306
Spherical-cap bubbles and drops, internal circulation      209—210
Spherical-cap bubbles and drops, skirt formation      204 208—209
Spherical-cap bubbles and drops, surface pressure distribution      207
Spherical-cap bubbles and drops, terminal velocity      204—207
Spherical-cap bubbles and drops, transfer      213—216
Spherical-cap bubbles and drops, wakes and wake angles      204 210—212
Spherical-cap bubbles and drops, wall effects      234—236 240
Spherically isotropic particles, definition      17
Spherically isotropic particles, drag at low Reynolds number      87
Spherically isotropic particles, motion at low Reynolds number      70
Sphericity      20 80 83
Sphericity, as correlating parameter for terminal velocities      87 158—159 161—162
Sphericity, operational      21
Sphericity, visual      87
Sphericity, working      21
Spheroidal-cap fluid particles      26 203—219
Spheroids      17. See also Oblate spheroids Prolate
Spheroids, accelerated motion of      292—294
Spheroids, drag at low Reynolds number      74—79 83 85
Spheroids, in shear field      260
Spheroids, noncontinuum effects      275
Spheroids, Oseen approximation for      77—78
Spheroids, ratio of form drag to skin friction      78 147
Spheroids, streamlines and concentration contours      143—144 150—151
Spheroids, transfer      91—93 150—153 163
Spheroids, wake formation and character      143—144
Spin      see Rotation Top
Spiral trajectories of fluid particles      172 188 189 195
Spiral trajectories of rigid particles      70 114 315 317
Splitting      see Breakup of bubbles and drops
Square bars      80f 85—87 164
Stagnant cap      39 64—66 127f
Standard drag curve      110—113 125 169f 171 272 277 315
Static bubbles and drops      22
Statistical projected length      20—21
Stokes flow      see Creeping flow
Stokes number      264 307f
Stokes's law      see Terminal velocity
Stream function, axisymmetric creeping flow      9
Stream function, definition      6
Stream function, fluid spheres in creeping flow      30—31
Streamlines for flow past rigid spheres      34 100 118
Streamlines for flow past spheroids      143—144 150—151
Streamlines for fluid spheres      31—32 128
Streamlines for spherical-cap and spheroidal-cap bubbles      210 212
Streamlines, around accelerating spheres      302
Streamlines, definition      6
Strouhal number      106—107 149 173 185 213
Supercritical flow range      110 116 223 245 263 267—268
Supersonic velocities      275—276
Support interference      112 120 275
Surface area of drops in air      183
Surface pressure distribution on fluid particles      129—130 180—181 205 207
Surface pressure distribution on rigid spheres      42 44 99 100 102 108—110
Surface pressure distribution, potential flow      8 99 181 207
Surface roughness      see Roughness
Surface shear stress      see Skin friction
Surface stretch model      197 199 335
Surface tension      see Interfacial tension
Surface tension pressure increment      5 22 31 180 322
Surface velocity      8 64 128 132 135 136
Surface viscosity      5 36 249
Surface vorticity distribution for spheres      33 34 42 46 49 99 100—106 127
Surface vorticity distribution, use in calculating skin friction drag      99
Surface vorticity distribution, use in calculating transfer rates      13 49 51 122
Surface-active impurities      38—41 134—135.
Surface-active impurities, effect on break up of bubbles and drops      344
Surface-active impurities, effect on external resistance to transfer      38 63—66 190—195 214 216
Surface-active impurities, effect on internal circulation of deformed fluid particles      171 175 189 209—210
Surface-active impurities, effect on internal circulation of fluid spheres      35—41 134—135
Surface-active impurities, effect on internal resistance to transfer      63—66
Surface-active impurities, effect on shape of fluid particles      33 40
Surface-active impurities, effect on surface velocities      128 175
Surface-active impurities, effect on terminal velocity of deformed fluid particles      171 174—175 178 179 238 305
Surface-active impurities, effect on terminal velocity of fluid spheres      35—36 38—41 135
Surface-active impurities, effect on transfer during formation      337
Surface-active impurities, effect on wakes and vortex shedding      175 184—188
Surface-active impurities, interfacial barriers to mass transfer      248—249
Surfactants      see Surface-active impurities
Temperature gradients      276 277 278
Terminal velocity, air bubbles in water      40 171—172
Terminal velocity, arbitrarily shaped particles at higher Reynolds number      157—162
Terminal velocity, bubbles and drops in pure systems      28 33 176—178
Terminal velocity, contaminated bubbles and drops      26 173—177 179
Terminal velocity, drops in gases      178—179
Terminal velocity, effect of density ratio for rigid particles      115—116 156 162
Terminal velocity, freestream turbulence effects      266
Terminal velocity, Hadamard — Rybczynsky value      33
Terminal velocity, nonspherical particles at low Reynolds number      73 87
Terminal velocity, oblate spheroids      148 150
Terminal velocity, randomly orientated particles at low Reynolds number      73
Terminal velocity, rigid particles in oscillating fluid      307—312
Terminal velocity, slugs      236—239
Terminal velocity, spheres      33—36 113—116 296
Terminal velocity, spherical-cap bubbles and drops      26 204—207
Terminal velocity, Stokes's law value      35 41 307
Terminal velocity, wall effects      223—228 233—236
Terminal velocity, water drops in air      169—170 179
Tetrahedra      165
Thermal number      257
Thin concentration boundary layer approach      12
Thin concentration boundary layer approach applied to fluid spheres      50—51 135 240
Thin concentration boundary layer approach applied to rigid spheres      48—49 122 230
Thin concentration boundary layer approach applied to slugs      241
Thin concentration boundary layer approach applied to spheroids      91—92
Top spin      259—262 264
Toroidal bubbles      306
Toroidal rigid particles      74
Trajectories of accelerating particles      289—292 293 297 298 300 303 311 315 316—318
Transition regime (between slip and free-molecule flows)      272—274 278
Transonic velocities      275
Tumbling motion      72 149 156 277
Turbulent flow      See also Freestream turbulence Intensity
Turbulent flow, breakup of bubbles and drops in      342 344—345
Turbulent flow, in natural convection      258
Two-dimensional bubbles in fluidized beds and liquid metals      216
Two-dimensional bubbles, initial motion of      305
Two-dimensional bubbles, slugs      238
Two-dimensional bubbles, terminal velocity      207
Two-dimensional bubbles, wakes and wake angle      204 212
Two-dimensional shapes      163
Underwater explosion bubbles      203 314 338
Unsteady motion      see Accelerated motion Oscillations Oscillatory Formation Formation
Velocity correction factor      158 161
Velocity gradients      see also Shear
Velocity gradients, effect on break-up of bubbles and drops      342—344
Velocity potential      7
Velocity ratio      223 230
Vibration      see also Oscillations of bubbles and drops Oscillatory
Vibration, analogy to fluid particle oscillation      187—188
Vibration, effect on resistance to transfer      190—191
Virtual mass      see Added mass
Viscosity ratio influence on accelerated motion      295
Viscosity ratio influence on internal circulation      41 127 133 189 231
Viscosity ratio influence on ratio of form drag to skin friction      130
Viscosity ratio influence on secondary motion      185—186
Viscosity ratio influence on shape of fluid particles      26—28 183
Viscosity ratio influence on terminal velocity      26—28 33 173—174
Viscosity ratio influence on transfer      47 51 53 54
Viscosity ratio influence on wakes      127 185
Viscous dissipation      see Aerodynamic heating Energy
Volumetric shape factor as correlating parameter for terminal velocity and drag      80 159—161
Volumetric shape factor, definition      18
Volumetric shape factor, values for specific shapes      159
Vortex      see Internal circulation Vortex
Vortex balls      107
Vortex shedding      see Wake shedding
Vorticity      6. See also Surface vorticity distribution
Vorticity, contours for flow past spheres      100—101 128—129
Vorticity, generation and diffusion      103 132 185 287—288 305—306
Wake shedding, air bubbles in water      173
Wake shedding, cylinders      154
Wake shedding, frequency      106—108 115 185 213 311
Wake shedding, inducement of secondary motion      110 115 187—188 210—211 301 305
Wake shedding, influence of mode of injection on      338
Wake shedding, influence on transfer      119—121 189 213—214
Wake shedding, onset      103 175 184—185 210 222 268 305
Wakes      see also Wake shedding
Wakes, accelerating spheres      301 305
Wakes, air bubbles in water      172
Wakes, angle for large bubbles      204 206
Wakes, at supersonic and hypersonic velocities      276
Wakes, attached recirculatory      102—103 119 210—211 222 258
Wakes, concentration type      117 121
Wakes, contribution to overall transfer rate      119 122f 162—163 213—216 258
Wakes, cylinders      154
Wakes, dimensions      46 100 103 127 143—144 268
Wakes, effect of imposed oscillations      311
Wakes, ellipsoidal bubbles and drops      184—185
Wakes, fluid spheres      126—127
Wakes, forming bubbles      324
Wakes, instability      103
Wakes, onset for spheres      46 102 126
Wakes, particles in a shear field      261
Wakes, particles subject to rotation      261 263
Wakes, periodicity      108 185
Wakes, rigid spheres      100—110
Wakes, shape and structure      103 154 185—186 210—211 262
Wakes, spheroids      143
Wakes, volume      103 143 175 184—185 210—211 235 258
Wakes, wall effects      109 222 233 234—235
Wall effects      221—241
Wall effects on accelerating particles      288
Wall effects on fluid particles      26 175 181 231—241
Wall effects on rigid particles      109 I47f 222—231
Wall effects on transfer rates      162 229—231 240—241
Waterdropsinair      169—171 179 188 315 346.
Weeping from orifices      329
Wetting      322 325 331
Wobbling motion      26 70 188 342
Zig-zag trajectories, fluid particles      172 185 188 189 195 305
Zig-zag trajectories, rigid particles      114 311
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå