Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Bubbles, drops, and particles
Àâòîðû: Clift R., Grace J.R., Weber M.E.
Àííîòàöèÿ: A vast body of literature dealing with bubbles, drops, and solid particles has
grown up in engineering, physics, chemistry, geophysics, and applied mathematics. The principal objective of this book is to give a comprehensive critical review of this literature as it applies to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. We have tried primarily to provide a reference text for research workers concerned with multiphase phenomena and a source of information, reference, and background material for engineers, students, and teachers who must deal with these phenomena in their work. In many senses, bubbles and drops are the chemical engineer's elementary particles. Inevitably the book has a bias toward the concerns of chemical
engineers since each of the authors is a chemical engineer. However, we have attempted to keep our scope sufficiently broad to be of interest to readers from other disciplines. It became clear to us while preparing this book that workers in one area are commonly oblivious to advances in other fields. If this book does no more than bring literature from other fields to the attention of research workers, it will have accomplished part of our purpose.
ßçûê:
Ðóáðèêà: Ôèçèêà /Êëàññè÷åñêàÿ ôèçèêà /Ìåõàíèêà æèäêîñòè è ãàçà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1978
Êîëè÷åñòâî ñòðàíèö: 380
Äîáàâëåíà â êàòàëîã: 19.06.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Secondary motion, ellipsoidal bubbles and drops 185—188
Secondary motion, in oscillating fluid 311
Secondary motion, oblate spheroids in free fall 150
Secondary motion, spheres in free fall 114—116
Secondary motion, spherical-cap bubbles 211—212
Secondary motion, wall effects on 233
Separation see Boundary layer separation
Separation angle 99 103 109 117 119—121 126—127
Sessile drops and bubbles 22
Settling factor 69 79
Settling velocity see Terminal velocity
Shape factors 17—22 83
Shape oscillations see Oscillation of bubbles and drops
Shapes 16—22 see Aspect
Shapes, freely moving fluid particles 26—28 179—183 235 237
Shapes, static bubbles and drops 22
Shapes, water drops in air 170 183—184
Shear field 260—261 342—344
Sherwood number, cylinders at low Reynolds and Peclet numbers 93
Sherwood number, definition 12 191—192
Sherwood number, ellipsoidal fluid particles 191—194
Sherwood number, fluid spheres 50—51 135 137
Sherwood number, in oscillating fluid 312—313
Sherwood number, local 49—50 93 117—121 150—151
Sherwood number, natural convection 252—259
Sherwood number, rigid spheres at higher Reynolds number 117—124
Sherwood number, rigid spheres at low Reynolds number 47—53 117
Sherwood number, simultaneous heat and mass transfer 255
Sherwood number, sphere subject to rotation 263—264
Sherwood number, wall effects 229—231
Shock waves 275 346
Simultaneous heat and mass transfer 255 258—259
Sinusoidal fluid motion 264 286 304—310 312
Skin friction 99
Skin friction for fluid particles 33 130
Skin friction for rigid spheroids 77 78 146—147 293
Skin friction for spheres at higher Reynolds number 103 109 110
Skin friction for spheres at low Reynolds number 33f 35
Skirts 208—209
Skirts, definition of 26
Skirts, formation 204 208
Skirts, influence on transfer 216
Skirts, influence on wakes 210
Skirts, length 209
Skirts, occurrence 27 208
Skirts, thickness 208—209
Skirts, wall effects 234—235
Slender bodies 74 80 82 90.
Slip flow regime 116 272—275 278
Slug flow 26 236—239
Spectral distribution see Energy spectrum of turbulence
Spheres, accelerated motion 286—291 295—304 306—316
Spheres, compressibility effects 275—278 279
Spheres, flow at higher Reynolds number 97—116 125—135
Spheres, flow at low Reynolds number 30—66
Spheres, freestream turbulence effects 265—271
Spheres, in shear field 260—262
Spheres, natural convection 251—254 255 257—258 278
Spheres, noncontinuum effects 271—274 278—279
Spheres, numerical solutions for 46 97—99 121 301 303—304
Spheres, rotation 260—264
Spheres, roughness effects 244—245
Spheres, steady-state transfer with stagnant continuous phase 47 89
Spheres, transfer at higher Reynolds number 117—125 135—137 163 164
Spheres, transfer at low Reynolds number 46—66 117
Spheres, transfer with unsteady external resistance 51—53 137
Spheres, transfer with variable particle concentration 53—63 94 137
Spheres, wall effects 221—228 229—231 231—232 240
Spherical cap rigid particles 74 210—211
Spherical fluid particles see Spheres
Spherical-cap bubbles and drops 26 203—219 234—236 240
Spherical-cap bubbles and drops, external flow field 212
Spherical-cap bubbles and drops, initial motion of 305—306
Spherical-cap bubbles and drops, internal circulation 209—210
Spherical-cap bubbles and drops, skirt formation 204 208—209
Spherical-cap bubbles and drops, surface pressure distribution 207
Spherical-cap bubbles and drops, terminal velocity 204—207
Spherical-cap bubbles and drops, transfer 213—216
Spherical-cap bubbles and drops, wakes and wake angles 204 210—212
Spherical-cap bubbles and drops, wall effects 234—236 240
Spherically isotropic particles, definition 17
Spherically isotropic particles, drag at low Reynolds number 87
Spherically isotropic particles, motion at low Reynolds number 70
Sphericity 20 80 83
Sphericity, as correlating parameter for terminal velocities 87 158—159 161—162
Sphericity, operational 21
Sphericity, visual 87
Sphericity, working 21
Spheroidal-cap fluid particles 26 203—219
Spheroids 17. See also Oblate spheroids Prolate
Spheroids, accelerated motion of 292—294
Spheroids, drag at low Reynolds number 74—79 83 85
Spheroids, in shear field 260
Spheroids, noncontinuum effects 275
Spheroids, Oseen approximation for 77—78
Spheroids, ratio of form drag to skin friction 78 147
Spheroids, streamlines and concentration contours 143—144 150—151
Spheroids, transfer 91—93 150—153 163
Spheroids, wake formation and character 143—144
Spin see Rotation Top
Spiral trajectories of fluid particles 172 188 189 195
Spiral trajectories of rigid particles 70 114 315 317
Splitting see Breakup of bubbles and drops
Square bars 80f 85—87 164
Stagnant cap 39 64—66 127f
Standard drag curve 110—113 125 169f 171 272 277 315
Static bubbles and drops 22
Statistical projected length 20—21
Stokes flow see Creeping flow
Stokes number 264 307f
Stokes's law see Terminal velocity
Stream function, axisymmetric creeping flow 9
Stream function, definition 6
Stream function, fluid spheres in creeping flow 30—31
Streamlines for flow past rigid spheres 34 100 118
Streamlines for flow past spheroids 143—144 150—151
Streamlines for fluid spheres 31—32 128
Streamlines for spherical-cap and spheroidal-cap bubbles 210 212
Streamlines, around accelerating spheres 302
Streamlines, definition 6
Strouhal number 106—107 149 173 185 213
Supercritical flow range 110 116 223 245 263 267—268
Supersonic velocities 275—276
Support interference 112 120 275
Surface area of drops in air 183
Surface pressure distribution on fluid particles 129—130 180—181 205 207
Surface pressure distribution on rigid spheres 42 44 99 100 102 108—110
Surface pressure distribution, potential flow 8 99 181 207
Surface roughness see Roughness
Surface shear stress see Skin friction
Surface stretch model 197 199 335
Surface tension see Interfacial tension
Surface tension pressure increment 5 22 31 180 322
Surface velocity 8 64 128 132 135 136
Surface viscosity 5 36 249
Surface vorticity distribution for spheres 33 34 42 46 49 99 100—106 127
Surface vorticity distribution, use in calculating skin friction drag 99
Surface vorticity distribution, use in calculating transfer rates 13 49 51 122
Surface-active impurities 38—41 134—135.
Surface-active impurities, effect on break up of bubbles and drops 344
Surface-active impurities, effect on external resistance to transfer 38 63—66 190—195 214 216
Surface-active impurities, effect on internal circulation of deformed fluid particles 171 175 189 209—210
Surface-active impurities, effect on internal circulation of fluid spheres 35—41 134—135
Surface-active impurities, effect on internal resistance to transfer 63—66
Surface-active impurities, effect on shape of fluid particles 33 40
Surface-active impurities, effect on surface velocities 128 175
Surface-active impurities, effect on terminal velocity of deformed fluid particles 171 174—175 178 179 238 305
Surface-active impurities, effect on terminal velocity of fluid spheres 35—36 38—41 135
Surface-active impurities, effect on transfer during formation 337
Surface-active impurities, effect on wakes and vortex shedding 175 184—188
Surface-active impurities, interfacial barriers to mass transfer 248—249
Surfactants see Surface-active impurities
Temperature gradients 276 277 278
Terminal velocity, air bubbles in water 40 171—172
Terminal velocity, arbitrarily shaped particles at higher Reynolds number 157—162
Terminal velocity, bubbles and drops in pure systems 28 33 176—178
Terminal velocity, contaminated bubbles and drops 26 173—177 179
Terminal velocity, drops in gases 178—179
Terminal velocity, effect of density ratio for rigid particles 115—116 156 162
Terminal velocity, freestream turbulence effects 266
Terminal velocity, Hadamard — Rybczynsky value 33
Terminal velocity, nonspherical particles at low Reynolds number 73 87
Terminal velocity, oblate spheroids 148 150
Terminal velocity, randomly orientated particles at low Reynolds number 73
Terminal velocity, rigid particles in oscillating fluid 307—312
Terminal velocity, slugs 236—239
Terminal velocity, spheres 33—36 113—116 296
Terminal velocity, spherical-cap bubbles and drops 26 204—207
Terminal velocity, Stokes's law value 35 41 307
Terminal velocity, wall effects 223—228 233—236
Terminal velocity, water drops in air 169—170 179
Tetrahedra 165
Thermal number 257
Thin concentration boundary layer approach 12
Thin concentration boundary layer approach applied to fluid spheres 50—51 135 240
Thin concentration boundary layer approach applied to rigid spheres 48—49 122 230
Thin concentration boundary layer approach applied to slugs 241
Thin concentration boundary layer approach applied to spheroids 91—92
Top spin 259—262 264
Toroidal bubbles 306
Toroidal rigid particles 74
Trajectories of accelerating particles 289—292 293 297 298 300 303 311 315 316—318
Transition regime (between slip and free-molecule flows) 272—274 278
Transonic velocities 275
Tumbling motion 72 149 156 277
Turbulent flow See also Freestream turbulence Intensity
Turbulent flow, breakup of bubbles and drops in 342 344—345
Turbulent flow, in natural convection 258
Two-dimensional bubbles in fluidized beds and liquid metals 216
Two-dimensional bubbles, initial motion of 305
Two-dimensional bubbles, slugs 238
Two-dimensional bubbles, terminal velocity 207
Two-dimensional bubbles, wakes and wake angle 204 212
Two-dimensional shapes 163
Underwater explosion bubbles 203 314 338
Unsteady motion see Accelerated motion Oscillations Oscillatory Formation Formation
Velocity correction factor 158 161
Velocity gradients see also Shear
Velocity gradients, effect on break-up of bubbles and drops 342—344
Velocity potential 7
Velocity ratio 223 230
Vibration see also Oscillations of bubbles and drops Oscillatory
Vibration, analogy to fluid particle oscillation 187—188
Vibration, effect on resistance to transfer 190—191
Virtual mass see Added mass
Viscosity ratio influence on accelerated motion 295
Viscosity ratio influence on internal circulation 41 127 133 189 231
Viscosity ratio influence on ratio of form drag to skin friction 130
Viscosity ratio influence on secondary motion 185—186
Viscosity ratio influence on shape of fluid particles 26—28 183
Viscosity ratio influence on terminal velocity 26—28 33 173—174
Viscosity ratio influence on transfer 47 51 53 54
Viscosity ratio influence on wakes 127 185
Viscous dissipation see Aerodynamic heating Energy
Volumetric shape factor as correlating parameter for terminal velocity and drag 80 159—161
Volumetric shape factor, definition 18
Volumetric shape factor, values for specific shapes 159
Vortex see Internal circulation Vortex
Vortex balls 107
Vortex shedding see Wake shedding
Vorticity 6. See also Surface vorticity distribution
Vorticity, contours for flow past spheres 100—101 128—129
Vorticity, generation and diffusion 103 132 185 287—288 305—306
Wake shedding, air bubbles in water 173
Wake shedding, cylinders 154
Wake shedding, frequency 106—108 115 185 213 311
Wake shedding, inducement of secondary motion 110 115 187—188 210—211 301 305
Wake shedding, influence of mode of injection on 338
Wake shedding, influence on transfer 119—121 189 213—214
Wake shedding, onset 103 175 184—185 210 222 268 305
Wakes see also Wake shedding
Wakes, accelerating spheres 301 305
Wakes, air bubbles in water 172
Wakes, angle for large bubbles 204 206
Wakes, at supersonic and hypersonic velocities 276
Wakes, attached recirculatory 102—103 119 210—211 222 258
Wakes, concentration type 117 121
Wakes, contribution to overall transfer rate 119 122f 162—163 213—216 258
Wakes, cylinders 154
Wakes, dimensions 46 100 103 127 143—144 268
Wakes, effect of imposed oscillations 311
Wakes, ellipsoidal bubbles and drops 184—185
Wakes, fluid spheres 126—127
Wakes, forming bubbles 324
Wakes, instability 103
Wakes, onset for spheres 46 102 126
Wakes, particles in a shear field 261
Wakes, particles subject to rotation 261 263
Wakes, periodicity 108 185
Wakes, rigid spheres 100—110
Wakes, shape and structure 103 154 185—186 210—211 262
Wakes, spheroids 143
Wakes, volume 103 143 175 184—185 210—211 235 258
Wakes, wall effects 109 222 233 234—235
Wall effects 221—241
Wall effects on accelerating particles 288
Wall effects on fluid particles 26 175 181 231—241
Wall effects on rigid particles 109 I47f 222—231
Wall effects on transfer rates 162 229—231 240—241
Waterdropsinair 169—171 179 188 315 346.
Weeping from orifices 329
Wetting 322 325 331
Wobbling motion 26 70 188 342
Zig-zag trajectories, fluid particles 172 185 188 189 195 305
Zig-zag trajectories, rigid particles 114 311
Ðåêëàìà