Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Bubbles, drops, and particles

Àâòîðû: Clift R., Grace J.R., Weber M.E.

Àííîòàöèÿ:

A vast body of literature dealing with bubbles, drops, and solid particles has
grown up in engineering, physics, chemistry, geophysics, and applied mathematics. The principal objective of this book is to give a comprehensive critical review of this literature as it applies to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. We have tried primarily to provide a reference text for research workers concerned with multiphase phenomena and a source of information, reference, and background material for engineers, students, and teachers who must deal with these phenomena in their work. In many senses, bubbles and drops are the chemical engineer's elementary particles. Inevitably the book has a bias toward the concerns of chemical
engineers since each of the authors is a chemical engineer. However, we have attempted to keep our scope sufficiently broad to be of interest to readers from other disciplines. It became clear to us while preparing this book that workers in one area are commonly oblivious to advances in other fields. If this book does no more than bring literature from other fields to the attention of research workers, it will have accomplished part of our purpose.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êëàññè÷åñêàÿ ôèçèêà/Ìåõàíèêà æèäêîñòè è ãàçà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1978

Êîëè÷åñòâî ñòðàíèö: 380

Äîáàâëåíà â êàòàëîã: 19.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Accelerated motion      264 285—318 335 346
Acceleration modulus, definition of      285
Acceleration modulus, influence of      296
Accommodation coefficient      273
Accommodation coefficient, thermal      278
Accumulation of surfactants      36 38 195
Added mass coefficient      292 296 316 317 323 325
Added mass during bubble formation      324 325
Added mass in arbitrarily accelerated motion      316
Added mass, conditions for neglect of      275 300—301 309 317
Added mass, fluid spheres      295 304 305
Added mass, rigid spheres      275 287 291 296 297
Added mass, spheroids      292—293
Adjusted sphere      274—275
Aerodynamic heating      277 278
Aging      see Accumulation of surfactants
Aiding flow      256—259
Amplitude of imposed oscillatory flow      309 314
Amplitude of natural oscillations of fluid particles      188 191 197
Amplitude of secondary motion of rigid particles      103 115 148—149 156
Amplitude ratio      264—265 307—308 310—311 313
Analogy between heat and mass transfer      11 12
Angular velocity      259 261
Annular channels      238
Arbitrarily shaped particles conductance      90
Arbitrarily shaped particles, drag at low Reynolds number      87—88
Arbitrarily shaped particles, motion at low Reynolds number      70—71 87—88
Arbitrarily shaped particles, natural convection      254—255
Arbitrarily shaped particles, terminal velocity      157—162
Arbitrarily shaped particles, transfer at low Pec let number      91
Arbitrarily shaped particles, transfer with variable concentration      93—94
Archimedes number      113f 206
Aspect ratio      see also Deformation
Aspect ratio of bubbles and drops in contaminated liquids      181—182
Aspect ratio of bubbles and drops in pure liquids      182—183
Aspect ratio of drops in air      170 183—184
Aspect ratio of spheroids      75 143 147 294
Aspect ratio, definition of      17 75 80
Asymptotic expansions      see Matched asymptotic expansions
Atomization      see Formation of drops
Attached eddy      see Wakes
Axisymmetric particles      16—17
Axisymmetric particles, drag at low Reynolds number      83—85
Axisymmetric particles, in free fall      70—73
Axisymmetric particles, in shear field      263
Axisymmetric particles, rotation      260 263
Basset history term      see History effects
Bernoulli's equation      7 338
Best number      113
Biot number      62 94
Bodies of revolution      see Axisymmetric particles
Boiling heat transfer      236 337
Bond criterion      see Surface-active impurities
Bond number      26f
boundary conditions      3 4 9 30—31
Boundary conditions, concentration      10 12 13 47 52 88 117
Boundary conditions, stress      5 31 39 42 44 286
Boundary conditions, temperature      11 12
Boundary conditions, velocity      4 31 98 222 252 286
Boundary layer approximation      9—10. See also Thin concentration boundary layer
Boundary layer approximation for fluid spheres      130—134 135—136
Boundary layer approximation for rigid spheres      50 99 120f
Boundary layer approximation, application to natural convection      252 255 258
Boundary layer separation in natural and mixed convection      251 257
Boundary layer separation on arbitrarily shaped particles      162
Boundary layer separation on cylinders      154
Boundary layer separation on fluid particles      126 132 134 175 185 210
Boundary layer separation on rigid spheres      99 100 102 107—109 222 245 263
Boundary layer separation on spheroids      143
Boundary layer separation, effect of fluid compressibility on      275
Boundary layer separation, effect of freestream turbulence on      262 268
Boundary layer separation, effect of rotation on      262 263
Boundary layer separation, effect of surface roughness on      245
Boundary layer separation, effect of surfactants on      135 175
Boundary layer stripping      346
Boundary layers, concentration      11 13 92 246
Boundary layers, interaction with shock waves      275
Boundary layers, internal      132 205
Boundary layers, momentum      9—10
Boundary layers, temperature      10 246
Boundary layers, thickness      99 100 254 272
Boundary layers, transition      109 120 245 262 266 316
Boundary layers, turbulent      109 121 245 269
Boussinesq approximation      249
Breakup of bubbles      339—347
Breakup of bubbles by impingement      347
Breakup of bubbles by Rayleigh — Taylor instability      339—342
Breakup of bubbles by resonance      188 342
Breakup of bubbles by velocity gradients      261 342—344
Breakup of bubbles in oscillating flow fields      314
Breakup of bubbles in stagnant media      339—342
Breakup of bubbles in turbulent flow fields      269 344—345
Breakup of bubbles, maximum stable size      341—342 344
Breakup of drops      339—347
Breakup of drops by collision      346—347
Breakup of drops by electric fields      346
Breakup of drops by impingement      347
Breakup of drops by Rayleigh — Taylor instability      339—342
Breakup of drops by resonance      188 342
Breakup of drops by velocity gradients      261 342—344
Breakup of drops in air      171 341—342
Breakup of drops in air blasts      346
Breakup of drops in stagnant media      171 203 339—342
Breakup of drops in turbulent flow fields      269 342 344—345
Breakup of drops, falling in gases      171 203 341—342
Breakup of drops, maximum stable size      341—342 344
Breakup of liquid threads      333
Brownian motion      70 71 272
Buoyancy      255 312 324 333.
Capacitance      88—89
Capacitance number      329
Capillary pressure      see Surface tension pressure increment
Cavitation      337 338
Chamber volume, effect on bubble formation      322 329 330
Characteristic lengths      92 162 163 254
Circularity      20
Circularity, modified      80
Circularity, operational      21
Cluster of particles      164
Compressibility effects      271—272 275—278 338
Compressibility effects on drag      275—278
Compressibility effects on heat transfer      279
Concentration contours      118 137 150—151
Conductance factor      90
Conductance for arbitrary axisymmetric shapes      90
Conductance for particles of various shapes      89
Conductance for slender bodies      90
Conductance, definition      89
Cones in creeping flow      74 83
Cones, compressibility effects      275
Cones, free fall at higher Reynolds number      165
Cones, shape classification      17
Contact angle      22 324 338
Contamination      see Surface-active impurities
Continuity equation, overall      3 4 9 13 14 97 250
Continuity equation, species      10 12 47 52 88 116 250
Continuous phase, definition of      2
Coriolis forces      263
Creeping flow      8—9
Creeping flow, accelerating fluid sphere      295
Creeping flow, disk released from rest      294
Creeping flow, drag on accelerating rigid sphere      287—291
Creeping flow, natural convection      256—257
Creeping flow, noncontinuum flow      273
Creeping flow, panicle in oscillating fluid      286—287 307—309
Creeping flow, particle orientation in      18
Creeping flow, particle rotation and fluid shear      259—261
Creeping flow, relevance at nonzero Reynolds numbers      88 297 318
Creeping flow, rigid axisymmetric particles      73 83—85
Creeping flow, rigid spheres released from rest      288—292
Creeping flow, rigid spheroids released from rest      292—294
Creeping flow, slender bodies      82
Creeping flow, spheres in steady motion      30—35 47—51
Creeping flow, spheroids in steady motion      75—77
Creeping flow, wall effects      222 223—226 231—232
Critical range of flow      110 114 223 267 268 316
Critical transition, effect of acceleration on      316
Critical transition, effect of freestream turbulence      266—267
Critical transition, effect of rotation      262—263
Critical transition, effect of surface roughness      244—245 262 263
Critical transition, spheres      109—110 223
Critical transition, spheroids      143
Crossflow      256—258
Cubes      17
Cubes, compressibility effects      278
Cubes, drag at low Reynolds number      87
Cubes, noncontinuum effects      275
Cubes, orientation in free fall      165
Cubes, transfer      89 164
Curvilinear trajectories      316
cylinders      17
Cylinders, axial resistance      79—80 83
Cylinders, compressibility effects on heat transfer      278—279
Cylinders, drag      74 79—80 87 153—156 160—161
Cylinders, freestream turbulence effects      269—271
Cylinders, in free fall or rise      153—156
Cylinders, in shear field      260
Cylinders, natural convection      258 278
Cylinders, noncontinuum effects      275 278
Cylinders, rotation      260 264
Cylinders, roughness effects      245
Cylinders, secondary motion      154—156
Cylinders, time variation of concentration      94
Cylinders, transfer      89 90 93 94 156—157 163 164
Cylinders, treated as slender bodies      82 90
D'Alembert's paradox      8
Davies and Taylor equation      205
Deformation      32. See also Aspect ratio Shapes
Deformation due to shear field      263 342—344
Deformation due to turbulence      269
Deformation due to wall effects      231 233 235 240
Deformation during bubble formation      324
Deformation during drop formation      331
Deformation of accelerating drops      305
Deformation of air bubbles in water      172
Deformation of water drops in air      170
Deformation, onset of      44 125 179—180 305
Degree of circulation      41
Density ratio, effect in accelerated motion      285 288—291 293—295 298 309
Density ratio, effect on secondary motion of rigid particles      115 143 154 156
Density ratio, effect on terminal velocity and drag      114—116 156 161 162
Diameter, equilibrium      337—338
Diameter, equivalent      18
Diameter, hydraulic      226 236
Diameter, hydraulic equivalent      77 79
Diameter, image-shearing      18
Diameter, projected area      18 21 159
Diameter, statistical intercept      18 21
Diffusion equation      see Continuity equation species
Dilation      see Oscillation of bubbles and drops
Dimple      see Indentation on base of bubbles and drops
disks      17
Disks, accelerated motion of      294
Disks, drag      74 76 80 145—148 160
Disks, free fall      148—149
Disks, motion at higher Reynolds number      143—149
Disks, motion at low Reynolds number      74
Disks, rotation      260
Disks, secondary motion      143 148—149
Disks, transfer      91 152—153 163
Disks, wakes      143—144
Dispersed phase, definition of      2
Displacement modulus      285 297
Drag      See also Drag coefficient Form Skin
Drag coefficient for air bubbles in water      171
Drag coefficient for curvilinear trajectory      316
Drag coefficient for cylinders      154—156
Drag coefficient for disks      145—147
Drag coefficient for fluid spheres      33 130—134
Drag coefficient for rigid spheres      35 43 99 103 110—113
Drag coefficient for rigid spheroids      78 146—147
Drag coefficient in accelerated motion      305 315 318
Drag coefficient, compressibility effects      275—278
Drag coefficient, free convection effects      256—258
Drag coefficient, free-molecule      276
Drag coefficient, inviscid      277
Drag coefficient, shear and rotation influence      260—263
Drag coefficient, spherical-cap fluid particles      206
Drag coefficient, turbulence effects      266—268
Drag coefficient, wall effects      226—227
Drag coefficient, water drops in air      170—171 341—342
Drag during bubble formation      324 326
Drag during drop formation      333
Drag factor (wall effects)      223
Drag in accelerated motion      287 296 312 314 315—316
Drag ratio (nonspherical particles) cylinders at low Reynolds number      79—81
Drag ratio (nonspherical particles) cylinders at low Reynolds number, definition      69
Drag ratio (nonspherical particles) cylinders at low Reynolds number, orthotropic particles at low Reynolds number      85—87
Drag ratio (nonspherical particles) cylinders at low Reynolds number, spherically isotropic particles at low Reynolds number      87
Drag ratio (nonspherical particles) cylinders at low Reynolds number, spheroids      74—77 147—148 292
Drag, calculation from stream function      73—74
Drift      31 35 42 74f
Eddies      see Wakes Turbulent
Ellipsoid of revolution      see Spheroids
Ellipsoidal fluid particles      23—26 169—199 232—233 240
Ellipsoidal rigid particles      75 82.
Ellipsoidal-cap bubbles      see Spheroidal-cap fluid particles
Elongation ratio      19
Enclosed vertical tubes      239—240
End effects      225
Energy dissipation      11 132 189.
energy equation      3 11 12 303
Energy spectrum of turbulence      268 269 344—345
Entrainment      see Drift
Eotvos number, definition      26
Eotvos number, use in correlating shapes of fluid particles      181
Equivalent sphere      18 69 158
Error distribution solutions      see Galerkin's method
Euler equation      7
External resistance to transfer      See also the individual shape
External resistance to transfer, effect of surface-active impurities      38 63—66 192 194—196 214 216
External resistance to transfer, ellipsoidal fluid particles      192—197
Extraction efficiency      54
Fall from rest      see Initial motion
Falling sphere viscometry      223 228
Fibres      74. See also Slender bodies
Flatness ratio      19
Flattening      See Deformation
Floating bubbles and drops      22
Flow visualization for flow past spheres      103—105 109 222 261
Flow visualization for flow past spheroids and disks      143
Flow visualization of boundary layer separation      109 266f
Flow visualization of forming bubbles and drops      323 332
Flow visualization of internal circulation      36—38 189 210
Flow visualization of wake motion      103 109 184—185 211 212
Flow visualization, evaluation of      264
Flow visualization, hydrogen bubble technique      212 339
Flow visualization, mixed free and forced convection      258
Fluctuations      see Oscillations
Fluid particles, definition of      2
Fluidized beds, breakup of bubbles in      339 346
Fluidized beds, bubble formation and initial motion      305f 329—330
Fluidized beds, bubble properties in      203 216—218
Fluidized beds, slug properties in      236 237f
Fore-and-aft symmetry of flow fields      8 30 31 40 42 43 100 222
Fore-and-aft symmetry of fluid particles      23 26 170
Fore-and-aft symmetry of rigid particles      17 72 83 164
Form drag      99
Form drag for fluid particles      33 130
Form drag for rigid spheres at higher Reynolds number      103 108 110
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå