Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Bubbles, drops, and particles
Àâòîðû: Clift R., Grace J.R., Weber M.E.
Àííîòàöèÿ: A vast body of literature dealing with bubbles, drops, and solid particles has
grown up in engineering, physics, chemistry, geophysics, and applied mathematics. The principal objective of this book is to give a comprehensive critical review of this literature as it applies to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. We have tried primarily to provide a reference text for research workers concerned with multiphase phenomena and a source of information, reference, and background material for engineers, students, and teachers who must deal with these phenomena in their work. In many senses, bubbles and drops are the chemical engineer's elementary particles. Inevitably the book has a bias toward the concerns of chemical
engineers since each of the authors is a chemical engineer. However, we have attempted to keep our scope sufficiently broad to be of interest to readers from other disciplines. It became clear to us while preparing this book that workers in one area are commonly oblivious to advances in other fields. If this book does no more than bring literature from other fields to the attention of research workers, it will have accomplished part of our purpose.
ßçûê:
Ðóáðèêà: Ôèçèêà /Êëàññè÷åñêàÿ ôèçèêà /Ìåõàíèêà æèäêîñòè è ãàçà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1978
Êîëè÷åñòâî ñòðàíèö: 380
Äîáàâëåíà â êàòàëîã: 19.06.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Form drag for rigid spheres at low Reynolds number 35
Form dragfor rigid spheroids 77 78 146—147 293
Formation of bubbles 321—330 334—339
Formation of bubbles at circular orifices 322—330 334—337
Formation of bubbles at inclined orifices 334
Formation of bubbles at noncircular orifices 334
Formation of bubbles by electrolysis 337 339
Formation of bubbles by entrainment 339
Formation of bubbles by phase change 337—338
Formation of bubbles by Rayleigh — Taylor instability 338
Formation of bubbles in flowing fluid 334
Formation of bubbles in fluidized beds 329—330
Formation of bubbles in liquid metals 327
Formation of bubbles, chamber volume, effect of 322 329
Formation of bubbles, coalescence during 327—328 329
Formation of bubbles, constant flow conditions 322 324—328 332
Formation of bubbles, constant frequency 325 327 330
Formation of bubbles, constant pressure conditions 322 328
Formation of bubbles, constant volume 325
Formation of bubbles, intermediate conditions 325 329
Formation of bubbles, mass transfer during 335—337
Formation of bubbles, models for 323—330
Formation of bubbles, models for transfer during 335—337
Formation of drops 321—322 330—339
Formation of drops at circular orifices 332—337
Formation of drops at inclined orifices 334
Formation of drops at noncircular orifices 334
Formation of drops by jet disintegration 333—334
Formation of drops by phase change 337—338
Formation of drops in flowing fluid 334
Formation of drops, atomization 321—322 331
Formation of drops, by Rayleigh — Taylor instability 338
Formation of drops, coalescence during 334
Formation of drops, internal circulation during 335 336
Formation of drops, mass transfer during 335—337
Formation of drops, models for 331—333
Formation of drops, models for transfer during 335—337
Fourier number 52 94
Fractional approach to equilibrium 54 191
Free convection see Natural convection
Free-molecule regime 272—276 278—279
Freestream turbulence, effect on heat and mass transfer 120 162 269—271
Freestream turbulence, effect on lift in Magnus effect 262
Freestream turbulence, effect on particle motion and drag 262 264—269 306 315 318
Freestream turbulence. See also Turbulent flow effect on critical transition 110 114 262 266—267
Frequency of bubble formation 325 327 330
Frequency of eddy shedding 106—108 185 213 305 311 342
Frequency of imposed oscillations 309—313 314
Frequency of secondary motion oscillations 150 156 187—188 197
Frequency, natural 187—188 197 305 314 342
Fresh surface model 197 199 335
Galerkin's method 125 130 133—134 135
Galileo number 113f
Generation of fluid particles see Formation of bubbles Formation
Glide-tumble regime 149
Guard heating 122—123
Hadamard — Rybczynski solution for fluid spheres 30—33 38 47 50 58 137
Hailstones 114 143 147 165 245f
Harkins correction factor 325 331—332 333
Heat transfer coefficient see Mass transfer coefficient Analogy
History effects during bubble formation 324
History effects in arbitrarily accelerated motion 316
History effects, coefficient 292 296 316 317
History effects, conditions for neglect of 265—266 275 300—301 311 316 317
History effects, spheres 275 287—291 296 297
History effects, spheroids 292—294
Hydraulic equivalent sphere 77
Hydrostatic pressure 22 180 250
Hypersonic velocities 276
Immobile interface see Surface-active impurities
Impulsive motion 98 286
Inclined tubes 239
Indentation on base of bubbles and drops 26 204 208 215 216 305
Indentation on leading surface of bubbles and drops 339
Infinite cylinders see Cylinders
Initial motion 286—295
Initial motion, disks 294
Initial motion, drops 295 305
Initial motion, fluid spheres 295 304—305
Initial motion, particles in gases 302—304
Initial motion, particles in liquids 298—300
Initial motion, rigid spheres 286—292
Initial motion, rigid spheroids 292—294
Initial motion, spherical-cap bubbles 305—306
Initial motion, two-dimensional bubbles 305
Instability See also Breakup of bubbles Breakup
Instability of accelerating drops 346
Instability, growth rate of disturbances 333 340—341
Instability, Helmholtz type in fluid skirts 209
Instability, most dangerous wavelength 333
Instability, of wakes 103 143
Instability, Rayleigh type 330 333 344
Instability, Rayleigh — Taylor type 338 334—342
Intensity of turbulence 162 164 266—271 312
Interfacial barriers to mass transfer 248—249
Interfacial convection 246—248
Interfacial resistance see Interfacial barriers to mass transfer
Interfacial tension 5
Interfacial tension, determination of 22 325
Interfacial tension, importance in bubble and drop formation 325 327 333
Interfacial tension, importance in stabilizing fluid particles 339 344
Interfacial turbulence 247—248
Internal circulation in fluid spheres 36 127—129 133
Internal circulation in forming bubbles and drops 332 335 336
Internal circulation, asymmetry 35 37—38 127 130 134
Internal circulation, effect of surface active impurities on 36—41 128 171 175 189
Internal circulation, effect of viscosity ratio on 41 133 171
Internal circulation, effect on boundary layer separation and wake formation 126
Internal circulation, effect on resistance to transfer 192 194 197—198
Internal circulation, in deformed fluid particles 171 209—210
Internal circulation, onset of 41
Internal resistance to transfer see also the individual shape
Internal resistance to transfer, effect of internal circulation 197—198
Internal resistance to transfer, effect of surface active impurities 38 63—66 189—190 198
Internal resistance to transfer, oscillation effect 190 198—199
Irregular particles see Arbitrarily shaped particles
Irrotational flow see Potential flow
Isometric particles 17 161—162 165
Jets, breakup 330—331 333—334
Jets, formation 322 324 330—331 333—334
Jets, length 330 331 334
Kinetic theory of gases 272 277—278
Knudsen number 271
Kronig — Brink solution 58 59 60 62 65—66 137 197
Laplace's equation 7 88
Laser — Doppler anemometry 264
Lens-shaped particles 74
Levitation 312 313 339
Lift 229 259f 261 263 301 316 317
Lift coefficient 262 316
Liquid metals, bubbles in 38 203 216—218 327
Local transfer rates see Nusselt number Sherwood
Mach number 271
Magnus effect 261—262
Marangoni effect 64 246—249
Mass transfer coefficient for rigid spheres in free fall or rise 124—125
Mass transfer coefficient for stagnant external phase 47 89—91
Mass transfer coefficient, definition for fluid particles 191—192
Mass transfer factor 135—136 157 195 229 240
Mass transfer, during formation and release of fluid particles 335—337
Mass transfer, with stagnant continuous phase 47 88—91
Matched asymptotic expansions, drag at low Reynolds number by 44—45 78 260
Matched asymptotic expansions, transfer at low Peclet number by 48 93
Maximum stable size of fluid particles see Breakup of bubbles and drops
Migration of particles 229 259f 260 338
Modified pressure 4 9 31 42 102
Molecular speed ratio 277
Moment of inertia, dimensionless 148—149
Morton number 26
Natural convection 12 249—259
Natural frequency of fluid particles 187—188 197 305 314 342
Navier — Stokes equation 3 9
Navier — Stokes equation, numerical solutions 46 97—99 180 303—304
Navier — Stokes equation, simplified or integral forms 130 249
Navier — Stokes equation, uncoupling from energy and continuity equations 12
Needle-shaped particles 74 82 90.
Newman solution 55 58 59 60 62 65—66
Newton's law regime 108—109 113 142 147 156 162 164 309
No-slip condition 5 14 286
Noncontinuum effects 271—275 278—279
Noncontinuum effects on drag 272—275
Noncontinuum effects on heat transfer 278—279
Noncontinuum effects, corrections 170
Normal drag coefficient 316
nozzles see Formation of bubbles Formation
Nucleation 337—338
Numerical solutions for flow past cylinders 156—157
Numerical solutions for flow past fluid spheres 126
Numerical solutions for flow past rigid spheres 46 97—99 100 103 121 301 303—304
Numerical solutions, including transfer calculation 91 121 135 156—157 303—304
Nusselt number 12. See also Sherwood number
Nusselt number for sphere subject to compressibility effects 279
Nusselt number for sphere subject to noncontinuum effects 278—279
Nusselt number, for accelerating spheres 304
Nusselt number, influence of free convection 257
Nusselt number, local 119—121 269—270
Nusselt number, simultaneous heat and mass transfer 255 258—259
Oblate spheroids see also Spheroids
Oblate spheroids, accelerated motion 292—294
Oblate spheroids, definition 17
Oblate spheroids, drag 74—79 80 146—148 150
Oblate spheroids, free fall 150
Oblate spheroids, representation of fluid particles as 169 180
Oblate spheroids, secondary motion 150
Oblate spheroids, terminal velocity 150
Oblate spheroids, transfer 89 92 93 150—153 192—193
Oblate spheroids, use to approximate complex shapes 74 164—165 179
Octahedra 165
Opposing flow 256—259
Orientation, cylinders in free fall 155
Orientation, effect on motion of nonspherical particles 70—71 73 79 87
Orientation, effect on natural convection 256
Orientation, preferred 87 165
Orifice see Formation of bubbles Formation
Orifice constant 323
Orthotropic particles, definition 17
Orthotropic particles, drag at low Reynolds number 85—87
Orthotropic particles, motion of 70—71
Oscillation of bubbles and drops, due to release after formation 194 305 335
Oscillation of bubbles and drops, effect on external resistance to transfer 192 196—197
Oscillation of bubbles and drops, effect on internal resistance to transfer 190 198—199
Oscillation of bubbles and drops, effect on transfer rates during formation 335
Oscillation of bubbles and drops, onset of 175 176 185—186 188 189
oscillations 114—115 148—150 154—156 171 179. Secondary Vibration
Oscillations of mass transfer rates 119
Oscillations, associated with wake shedding 103 109 110 143
Oscillatory motion, bubble rise in 313—314
Oscillatory motion, drag in 286—288 306 309—311
Oscillatory motion, effect on transfer rates 312—313 314
Oscillatory motion, motion of particle in 306—312
Oscillatory motion, reduction of terminal velocity 307—312 313—314
Oseen approximation 9 41—46
Oseen approximation for rigid spheres 42
Oseen approximation for rigid spheres, rigid spheres by matched expansions 45 51
Oseen approximation for rigid spheres, rigid spheres in oscillatory motion 286—287
Oseen approximation, drag coefficient 43 112
Oseen approximation, extension to higher order 44—46
Oseen approximation, for spheroids and disks 77—78 145
Oseen approximation, stream function 42
Oseen approximation, surface vorticity 42 51
Oseen approximation, wall effects 226
Oseen approximation, with particle rotation 263
Parallelepipeds See also Square bars 17 79 83 85—87 94
Particle rotation see Rotation
Particle shape factors see Shape factors
Particle, definition of 1
Peclet number 10
Pendant drops 22
Penetration theory 213
Perimeter-equivalent factor 22 83 85 90
Phase shift 264—265 307—308 310 313
Plane bubbles see Two-dimensional bubbles
Plasma jets 277 316
Point force approximation technique see Slender bodies
potential flow 6 7 305
Potential flow, past spheres 8 33 132 287 305
Potential flow, past spheroids 181 189 192 205
Potential flow, pressure distribution 8 99 129 181 207
Potential flow, surface velocity 8 135 212
Potential flow, transfer 135 137 194 213
Prandtl number 12
Pressure see Modified pressure Surface
Pressure drop for particle moving through tube 228—229
Pressure gradient drag 306 309 315 317
Principal axes of translation 70—71
Principal translational resistances 71 72 75 80 87
prisms 164 165
Prolate spheroids see also Spheroids
Prolate spheroids, accelerated motion of 292—294
Prolate spheroids, definition 17
Prolate spheroids, drag 76—79
Prolate spheroids, time variation of concentration 94
Prolate spheroids, transfer 89 92 93 150
Prolate spheroids, treated as slender bodies 82
Pulsations see Oscillatory motion Vibration
Pure systems, internal circulation 38 41 189
Pure systems, secondary motion 188
Pure systems, shapes of fluid particles in 182—183 189
Pure systems, terminal velocity and drag 38 41 134 171 176—178
Pure systems, transfer 51 62 137 192 194—196
Pure systems, wakes 185
raindrops 126 127 134 170 346.
Random wobbling see Wobbling motion
Rarefied gases 272 279
Rayleigh instability see Instability Rayleigh
Rayleigh number 251
Rectangular parallelepipeds see Parallelepipeds
Relative roughness 244
Relaxation time 266 343
Release see also Formation of bubbles Formation
Release, effect on secondary motion 188
Release, effect on transfer 194 197 335 337
Resonance 188 311 342
Retardation coefficient 38
Reversibility of creeping flow solutions 9 42
Reversibility of overall transfer 88
Reynolds number 26
Reynolds number, critical 110 143 266—267 316
Reynolds number, internal 30 130 205 295
Reynolds number, lower critical 103
Reynolds number, metacritical 267
Reynolds number, rotational 264
Reynolds number, shear 259
Rossby number 262f
Rotation See also Tumbling motion Secondary
Rotation of particles in flow field 70 156 164 259—264 315
Rotation, effect on transfer 263—264
Rotation, tube rotation 239
Roughness, effect on flow and drag 244—245 262
Roughness, effect on heat and mass transfer 164 245—246
Scale of turbulence 264 266 312
Schmidt number 11
Screw motion 259 262—264
Secondary motion, accelerating spheres 301
Secondary motion, air bubbles in water 172—173
Secondary motion, cylinders in free fall 154—156
Secondary motion, disks in free fall 143 148—149
Secondary motion, effect of rotation on 263
Secondary motion, effect on drag 108 115 188
Secondary motion, effect on terminal velocity 115 188
Ðåêëàìà