Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles
Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Bubbles, drops, and particles

Àâòîðû: Clift R., Grace J.R., Weber M.E.

Àííîòàöèÿ:

A vast body of literature dealing with bubbles, drops, and solid particles has
grown up in engineering, physics, chemistry, geophysics, and applied mathematics. The principal objective of this book is to give a comprehensive critical review of this literature as it applies to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. We have tried primarily to provide a reference text for research workers concerned with multiphase phenomena and a source of information, reference, and background material for engineers, students, and teachers who must deal with these phenomena in their work. In many senses, bubbles and drops are the chemical engineer's elementary particles. Inevitably the book has a bias toward the concerns of chemical
engineers since each of the authors is a chemical engineer. However, we have attempted to keep our scope sufficiently broad to be of interest to readers from other disciplines. It became clear to us while preparing this book that workers in one area are commonly oblivious to advances in other fields. If this book does no more than bring literature from other fields to the attention of research workers, it will have accomplished part of our purpose.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êëàññè÷åñêàÿ ôèçèêà/Ìåõàíèêà æèäêîñòè è ãàçà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1978

Êîëè÷åñòâî ñòðàíèö: 380

Äîáàâëåíà â êàòàëîã: 19.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Form drag for rigid spheres at low Reynolds number      35
Form dragfor rigid spheroids      77 78 146—147 293
Formation of bubbles      321—330 334—339
Formation of bubbles at circular orifices      322—330 334—337
Formation of bubbles at inclined orifices      334
Formation of bubbles at noncircular orifices      334
Formation of bubbles by electrolysis      337 339
Formation of bubbles by entrainment      339
Formation of bubbles by phase change      337—338
Formation of bubbles by Rayleigh — Taylor instability      338
Formation of bubbles in flowing fluid      334
Formation of bubbles in fluidized beds      329—330
Formation of bubbles in liquid metals      327
Formation of bubbles, chamber volume, effect of      322 329
Formation of bubbles, coalescence during      327—328 329
Formation of bubbles, constant flow conditions      322 324—328 332
Formation of bubbles, constant frequency      325 327 330
Formation of bubbles, constant pressure conditions      322 328
Formation of bubbles, constant volume      325
Formation of bubbles, intermediate conditions      325 329
Formation of bubbles, mass transfer during      335—337
Formation of bubbles, models for      323—330
Formation of bubbles, models for transfer during      335—337
Formation of drops      321—322 330—339
Formation of drops at circular orifices      332—337
Formation of drops at inclined orifices      334
Formation of drops at noncircular orifices      334
Formation of drops by jet disintegration      333—334
Formation of drops by phase change      337—338
Formation of drops in flowing fluid      334
Formation of drops, atomization      321—322 331
Formation of drops, by Rayleigh — Taylor instability      338
Formation of drops, coalescence during      334
Formation of drops, internal circulation during      335 336
Formation of drops, mass transfer during      335—337
Formation of drops, models for      331—333
Formation of drops, models for transfer during      335—337
Fourier number      52 94
Fractional approach to equilibrium      54 191
Free convection      see Natural convection
Free-molecule regime      272—276 278—279
Freestream turbulence, effect on heat and mass transfer      120 162 269—271
Freestream turbulence, effect on lift in Magnus effect      262
Freestream turbulence, effect on particle motion and drag      262 264—269 306 315 318
Freestream turbulence. See also Turbulent flow effect on critical transition      110 114 262 266—267
Frequency of bubble formation      325 327 330
Frequency of eddy shedding      106—108 185 213 305 311 342
Frequency of imposed oscillations      309—313 314
Frequency of secondary motion oscillations      150 156 187—188 197
Frequency, natural      187—188 197 305 314 342
Fresh surface model      197 199 335
Galerkin's method      125 130 133—134 135
Galileo number      113f
Generation of fluid particles      see Formation of bubbles Formation
Glide-tumble regime      149
Guard heating      122—123
Hadamard — Rybczynski solution for fluid spheres      30—33 38 47 50 58 137
Hailstones      114 143 147 165 245f
Harkins correction factor      325 331—332 333
Heat transfer coefficient      see Mass transfer coefficient Analogy
History effects during bubble formation      324
History effects in arbitrarily accelerated motion      316
History effects, coefficient      292 296 316 317
History effects, conditions for neglect of      265—266 275 300—301 311 316 317
History effects, spheres      275 287—291 296 297
History effects, spheroids      292—294
Hydraulic equivalent sphere      77
Hydrostatic pressure      22 180 250
Hypersonic velocities      276
Immobile interface      see Surface-active impurities
Impulsive motion      98 286
Inclined tubes      239
Indentation on base of bubbles and drops      26 204 208 215 216 305
Indentation on leading surface of bubbles and drops      339
Infinite cylinders      see Cylinders
Initial motion      286—295
Initial motion, disks      294
Initial motion, drops      295 305
Initial motion, fluid spheres      295 304—305
Initial motion, particles in gases      302—304
Initial motion, particles in liquids      298—300
Initial motion, rigid spheres      286—292
Initial motion, rigid spheroids      292—294
Initial motion, spherical-cap bubbles      305—306
Initial motion, two-dimensional bubbles      305
Instability      See also Breakup of bubbles Breakup
Instability of accelerating drops      346
Instability, growth rate of disturbances      333 340—341
Instability, Helmholtz type in fluid skirts      209
Instability, most dangerous wavelength      333
Instability, of wakes      103 143
Instability, Rayleigh type      330 333 344
Instability, Rayleigh — Taylor type      338 334—342
Intensity of turbulence      162 164 266—271 312
Interfacial barriers to mass transfer      248—249
Interfacial convection      246—248
Interfacial resistance      see Interfacial barriers to mass transfer
Interfacial tension      5
Interfacial tension, determination of      22 325
Interfacial tension, importance in bubble and drop formation      325 327 333
Interfacial tension, importance in stabilizing fluid particles      339 344
Interfacial turbulence      247—248
Internal circulation in fluid spheres      36 127—129 133
Internal circulation in forming bubbles and drops      332 335 336
Internal circulation, asymmetry      35 37—38 127 130 134
Internal circulation, effect of surface active impurities on      36—41 128 171 175 189
Internal circulation, effect of viscosity ratio on      41 133 171
Internal circulation, effect on boundary layer separation and wake formation      126
Internal circulation, effect on resistance to transfer      192 194 197—198
Internal circulation, in deformed fluid particles      171 209—210
Internal circulation, onset of      41
Internal resistance to transfer      see also the individual shape
Internal resistance to transfer, effect of internal circulation      197—198
Internal resistance to transfer, effect of surface active impurities      38 63—66 189—190 198
Internal resistance to transfer, oscillation effect      190 198—199
Irregular particles      see Arbitrarily shaped particles
Irrotational flow      see Potential flow
Isometric particles      17 161—162 165
Jets, breakup      330—331 333—334
Jets, formation      322 324 330—331 333—334
Jets, length      330 331 334
Kinetic theory of gases      272 277—278
Knudsen number      271
Kronig — Brink solution      58 59 60 62 65—66 137 197
Laplace's equation      7 88
Laser — Doppler anemometry      264
Lens-shaped particles      74
Levitation      312 313 339
Lift      229 259f 261 263 301 316 317
Lift coefficient      262 316
Liquid metals, bubbles in      38 203 216—218 327
Local transfer rates      see Nusselt number Sherwood
Mach number      271
Magnus effect      261—262
Marangoni effect      64 246—249
Mass transfer coefficient for rigid spheres in free fall or rise      124—125
Mass transfer coefficient for stagnant external phase      47 89—91
Mass transfer coefficient, definition for fluid particles      191—192
Mass transfer factor      135—136 157 195 229 240
Mass transfer, during formation and release of fluid particles      335—337
Mass transfer, with stagnant continuous phase      47 88—91
Matched asymptotic expansions, drag at low Reynolds number by      44—45 78 260
Matched asymptotic expansions, transfer at low Peclet number by      48 93
Maximum stable size of fluid particles      see Breakup of bubbles and drops
Migration of particles      229 259f 260 338
Modified pressure      4 9 31 42 102
Molecular speed ratio      277
Moment of inertia, dimensionless      148—149
Morton number      26
Natural convection      12 249—259
Natural frequency of fluid particles      187—188 197 305 314 342
Navier — Stokes equation      3 9
Navier — Stokes equation, numerical solutions      46 97—99 180 303—304
Navier — Stokes equation, simplified or integral forms      130 249
Navier — Stokes equation, uncoupling from energy and continuity equations      12
Needle-shaped particles      74 82 90.
Newman solution      55 58 59 60 62 65—66
Newton's law regime      108—109 113 142 147 156 162 164 309
No-slip condition      5 14 286
Noncontinuum effects      271—275 278—279
Noncontinuum effects on drag      272—275
Noncontinuum effects on heat transfer      278—279
Noncontinuum effects, corrections      170
Normal drag coefficient      316
nozzles      see Formation of bubbles Formation
Nucleation      337—338
Numerical solutions for flow past cylinders      156—157
Numerical solutions for flow past fluid spheres      126
Numerical solutions for flow past rigid spheres      46 97—99 100 103 121 301 303—304
Numerical solutions, including transfer calculation      91 121 135 156—157 303—304
Nusselt number      12. See also Sherwood number
Nusselt number for sphere subject to compressibility effects      279
Nusselt number for sphere subject to noncontinuum effects      278—279
Nusselt number, for accelerating spheres      304
Nusselt number, influence of free convection      257
Nusselt number, local      119—121 269—270
Nusselt number, simultaneous heat and mass transfer      255 258—259
Oblate spheroids      see also Spheroids
Oblate spheroids, accelerated motion      292—294
Oblate spheroids, definition      17
Oblate spheroids, drag      74—79 80 146—148 150
Oblate spheroids, free fall      150
Oblate spheroids, representation of fluid particles as      169 180
Oblate spheroids, secondary motion      150
Oblate spheroids, terminal velocity      150
Oblate spheroids, transfer      89 92 93 150—153 192—193
Oblate spheroids, use to approximate complex shapes      74 164—165 179
Octahedra      165
Opposing flow      256—259
Orientation, cylinders in free fall      155
Orientation, effect on motion of nonspherical particles      70—71 73 79 87
Orientation, effect on natural convection      256
Orientation, preferred      87 165
Orifice      see Formation of bubbles Formation
Orifice constant      323
Orthotropic particles, definition      17
Orthotropic particles, drag at low Reynolds number      85—87
Orthotropic particles, motion of      70—71
Oscillation of bubbles and drops, due to release after formation      194 305 335
Oscillation of bubbles and drops, effect on external resistance to transfer      192 196—197
Oscillation of bubbles and drops, effect on internal resistance to transfer      190 198—199
Oscillation of bubbles and drops, effect on transfer rates during formation      335
Oscillation of bubbles and drops, onset of      175 176 185—186 188 189
oscillations      114—115 148—150 154—156 171 179. Secondary Vibration
Oscillations of mass transfer rates      119
Oscillations, associated with wake shedding      103 109 110 143
Oscillatory motion, bubble rise in      313—314
Oscillatory motion, drag in      286—288 306 309—311
Oscillatory motion, effect on transfer rates      312—313 314
Oscillatory motion, motion of particle in      306—312
Oscillatory motion, reduction of terminal velocity      307—312 313—314
Oseen approximation      9 41—46
Oseen approximation for rigid spheres      42
Oseen approximation for rigid spheres, rigid spheres by matched expansions      45 51
Oseen approximation for rigid spheres, rigid spheres in oscillatory motion      286—287
Oseen approximation, drag coefficient      43 112
Oseen approximation, extension to higher order      44—46
Oseen approximation, for spheroids and disks      77—78 145
Oseen approximation, stream function      42
Oseen approximation, surface vorticity      42 51
Oseen approximation, wall effects      226
Oseen approximation, with particle rotation      263
Parallelepipeds      See also Square bars 17 79 83 85—87 94
Particle rotation      see Rotation
Particle shape factors      see Shape factors
Particle, definition of      1
Peclet number      10
Pendant drops      22
Penetration theory      213
Perimeter-equivalent factor      22 83 85 90
Phase shift      264—265 307—308 310 313
Plane bubbles      see Two-dimensional bubbles
Plasma jets      277 316
Point force approximation technique      see Slender bodies
potential flow      6 7 305
Potential flow, past spheres      8 33 132 287 305
Potential flow, past spheroids      181 189 192 205
Potential flow, pressure distribution      8 99 129 181 207
Potential flow, surface velocity      8 135 212
Potential flow, transfer      135 137 194 213
Prandtl number      12
Pressure      see Modified pressure Surface
Pressure drop for particle moving through tube      228—229
Pressure gradient drag      306 309 315 317
Principal axes of translation      70—71
Principal translational resistances      71 72 75 80 87
prisms      164 165
Prolate spheroids      see also Spheroids
Prolate spheroids, accelerated motion of      292—294
Prolate spheroids, definition      17
Prolate spheroids, drag      76—79
Prolate spheroids, time variation of concentration      94
Prolate spheroids, transfer      89 92 93 150
Prolate spheroids, treated as slender bodies      82
Pulsations      see Oscillatory motion Vibration
Pure systems, internal circulation      38 41 189
Pure systems, secondary motion      188
Pure systems, shapes of fluid particles in      182—183 189
Pure systems, terminal velocity and drag      38 41 134 171 176—178
Pure systems, transfer      51 62 137 192 194—196
Pure systems, wakes      185
raindrops      126 127 134 170 346.
Random wobbling      see Wobbling motion
Rarefied gases      272 279
Rayleigh instability      see Instability Rayleigh
Rayleigh number      251
Rectangular parallelepipeds      see Parallelepipeds
Relative roughness      244
Relaxation time      266 343
Release      see also Formation of bubbles Formation
Release, effect on secondary motion      188
Release, effect on transfer      194 197 335 337
Resonance      188 311 342
Retardation coefficient      38
Reversibility of creeping flow solutions      9 42
Reversibility of overall transfer      88
Reynolds number      26
Reynolds number, critical      110 143 266—267 316
Reynolds number, internal      30 130 205 295
Reynolds number, lower critical      103
Reynolds number, metacritical      267
Reynolds number, rotational      264
Reynolds number, shear      259
Rossby number      262f
Rotation      See also Tumbling motion Secondary
Rotation of particles in flow field      70 156 164 259—264 315
Rotation, effect on transfer      263—264
Rotation, tube rotation      239
Roughness, effect on flow and drag      244—245 262
Roughness, effect on heat and mass transfer      164 245—246
Scale of turbulence      264 266 312
Schmidt number      11
Screw motion      259 262—264
Secondary motion, accelerating spheres      301
Secondary motion, air bubbles in water      172—173
Secondary motion, cylinders in free fall      154—156
Secondary motion, disks in free fall      143 148—149
Secondary motion, effect of rotation on      263
Secondary motion, effect on drag      108 115 188
Secondary motion, effect on terminal velocity      115 188
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå