Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Nagel R. — One-parameter semigroups of positive operators | 101, 107 |
Sornette D. — Critical phenomena in natural sciences | |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 236 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 475 |
Bartle R.G. — The Elements of Real Analysis | 372 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 310, 385 |
Bruce C.Berndt — Ramanujan's Notebooks (part 4) | 303, 322, 330, 332, 344 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 240, App. A, Table 12.I |
Ogata K. — Modern Control Engineering | 17 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 467 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 467 |
Bird R.B., Lightfoot E.N., Stewart W.E. — Transport Phenomena | 380, 619, 692 |
Evans L.C. — Partial Differential Equations | 191—194, 417 |
Levin B.Ya. — Lectures on entire functions | 67 |
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 636 |
Apostol T.M. — Mathematical Analysis | 326, 342, 468 |
Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 82 |
Heyde C.C. — Quasi-likelihood and its application: a general approach to optimal parameter estimation | 200 |
Gray R.M., Davisson L.D. — Introduction to statistical signal processing | 151 |
Felinger A. — Data analysis and signal processing in chromatography | 287 |
Finlayson B.A. — Numerical Methods for Problems With Moving Fronts | 320 |
Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 418 |
Alon N., Spenser J. — The probabilistic method | 117, 129 |
Connes A. — Noncommutative geometry | IV.8.$\beta$ |
Peebles P.Z. — Probability, random variables, and random signal principles | 173 |
Messer R. — Linear Algebra: Gateway to Mathematics | 217 |
Olver F.W.J. — Asymptotics and Special Functions | 112 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 199, 279, 389, 629 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 175, 180, 202 |
Mitrinovic D.S., Keckic J.D. — The Cauchy Method of Residues : Theory and Applications | 266 |
Balser W. — From divergent power series to analytic functions | 13 |
Abell M.L., Braselton J.P. — Mathematica by Example | 426—429 |
Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 166ff |
Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 346, 349, 350 |
Hormander L. — Notions of Convexity | 301 |
Widder D.V. — Advanced calculus | 365—423 |
Greenberg H.J. — A Simplified Introduction to LaTeX | 66 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 264 |
Kundu P.K., Cohen I.R. — Fluid mechanics | 288 |
Miklowitz J. — The theory of elastic waves and waveguides | 232—241 |
Bailey N.T.J. — The Elements of Stochastic Processes With Applications to the Natural Sciences. | 3, 142 |
Johnson N., Kotz S., Kemp A.W. — Univariate discrete distributions | 16, 27, 327 |
Debnath L. — Nonlinear water waves | 26, 28, 83, 89 |
Wilson A.H. — Thermodynam Mechanics | 106 |
Becker A.A. — The Boundary Element Method in Engineering. A complete course | 238, 239 |
Bellman R. — A brief introduction to theta functions | 20 |
Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 200, 358, 372, 387, 389, 402, 411, 412 |
Dwork B. — Generalized Hypergeometric Functions | 1, 92, 102, 128, 129, 135 |
Bellman R. — Methods of nonlinear analysis (Vol. 1) | 7, 101, 250 |
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 530 |
Appell J.M., Kalitvin A.S., Zabrejko P.P. — Partial Integral Operators and Integro-Differential Equations | 356 |
Skorokhod A.V., Prokhorov Y.V. (Ed) — Basic Principles and Applications of Probability Theory | 59, 68 |
Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 49—50 |
Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations | 83, 165, 169 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 346, 386—389, 404, 405 |
Mahmoud H.M. — Evolution of random search trees | 18, 35 |
Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 161, 162ff, 179, 180, 183, 189ff, 233, 236, 244, 245 |
Kolassa J.E. — Series Approximation Methods in Statistics | 8, 33 |
Lam Y. — Geometric Process and Its Applications | 11 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 273 |
Gorenflo R., Vessella S. — Abel Integral Equations: Analysis and Applications | 63 |
Braselton J.P. — Maple by Example | 473, 496 |
Resnick S.I. — Heavy-Tail Phenomena: Probabilistic and Statistical Modeling | 37, 53, 79, 239, 272 |
Bogachev V.I. — Measure Theory Vol.1 | 237 |
Duffie D., Singleton K.J. — Credit Risk. Pricing, Measurement and Management | 55, 234 |
Lynch S. — Dynamical Systems with Applications Using Mathematica® | 31 |
Dyke Ph.P.G. — Managing Mathematical Projects - with Success! | 58 |
Balakrishnan N., Nevzorov V.B. — A Primer on Statistical Distributions | 158, 159, 164, 179, 181 |
Carr J. — Applications of Centre Manifold Theory | 102 |
Dafermos C.M. (ed.), Feireisl E. (ed.) — Evolutionary Equations, Vol. 1 | 6 |
Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 462, 463 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | (196) |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 436, 548, 611, 804, 813, 843, 856 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 461 |
Schuster T. — The Method of Approximate Inverse: Theory and Applications | 153 |
Strauss W.A. — Partial Differential Equations: An Introduction | 334 |
Borel A., Mostow G.D. — Algebraic Groups and Discontinuous Subgroups: Proceedings | 212 |
Chatfield C. — The Analysis of Time Series: An Introduction | 156, 157, 239 |
Kilbas A., Srivastava H.M. — Theory and Applications of Fractional Differential Equations | 18—19, 23, 31, 36, 42, 44, 47—48, 50, 52, 55, 58, 84, 98, 140, 279—284, 287, 291, 295, 303—304, 306, 311—312, 315, 322—323, 329, 336, 340, 350, 352—353, 356—357, 362—364, 366—370, 373—377, 380—381, 384, 393, 400, 402—405, 435—436, 442, 451, 465 |
Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld | 13 |
Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 136 |
Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 172, 195 |
Maugin G.A. — Nonlinear waves in elastic crystals | 74 |
Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 198 |
Eringen A.C. — Mechanics of continua | 331, 362 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1052 |
Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 134 |
Marcus M., Rosen J. — Markov Processes, Gaussian Processes and Local Times | 565 |
Borwein J., Bailey D. — Mathematics by Experiment: Plausible Reasoning in the 21st Century | 196 |
Rainville E.D. — Special Functions | 41—42, 71, 106, 117, 216—217, 253, 285—287 |
Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 133, 179 |
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations (preliminary version of 10 September 1998) | 494 |
Smith S.W. — Digital Signal Processing | 334, 581—604 |
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 356, 370, 430 |
Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 185 |
Glasko V. — Inverse Problems of Mathematical Physics | 10 |
Kurth R. — Dimensional analysis and group theory in astrophysics | 69 |
Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 238 |
Scott A. — Neuroscience: a mathematical primer | 221, 329 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1052 |
Ito K. — Encyclopedic Dictionary of Mathematics | 240, App. A, Table 12.I |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 51, 216, 355 |
Taylor J.C. — An Introduction to Measure and Probability | 79 |
Kakosyan A.V., Klebanov L.B., Melamed J.A. — Characterization of Distributions by the Method of Intensively Monotone Operators | 19 |
Bichteler K. — Integration - a functional approach | 14 |
Jahne B. — Digital Image Processing | 18 |
Kuo W., Zuo M.J. — Optimal Reliability Modeling: Principles and Applications | 504 |
Zauderer E. — Partial Differential Equations of Applied Mathematics | 288 |
Staffans O. — Well-Posed Linear Systems | 1, 11, 184—191, 252, 254, 628, 810, 812 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 754—769 |
Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 166, 169, 276 |
Duffie D. — Security Markets. Stochastic Models | 253 |
Greenberg M.D. — Advanced engineering mathematics | 247 |
Prigogine I. — Nonequilibrium statistical mechanics | 169, 170, 227, 228 |
Karman T., Biot A.M. — Mathematical Methods in Engineering | 409, 430—432 |
Stakgold I. — Green's Functions and Boundary Value Problems | 163, 487 |
Borwein J.M., Borwein P.B. — Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity | 39 |
Bellman R. — Introduction to Matrix Analysis | 208 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1052 |
Bogachev V.I. — Measure Theory Vol.2 | I: 237 |
Pap E. — Complex Analysis Through Examples And Exercises | 263 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 11.3, 11.7 |
De Finetti B. — Theory of probability (Vol. 1) | 284 |
Nahin P.J. — The Science of Radio | xvi—xvii, 103 |
Serra J. — Image Analysis and Mathematical Morphology | 288, 534 |
Kienzler R., Herrmann G. — Mechanics of material space: with applications to defect and fracture mechanics | 146 |
Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 12 |
Kunz K.S., Luebbers R.J. — The finite difference time domain method for electromagnetics | 171 |
Bellman R. — Introduction to the mathematical theory of control processes (Volume II: Nonlinear Processes) | 263, 272 |
Chandrasekhar S. — Radiative Transfer | 346, 347 |
Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions | 172 |
Kannan D. — An introduction to stochastic processes | 15 |
Bardou F., Bouchaud J., Aspect A. — Levy statistics and laser cooling | 36 |
Tucker À. — Applied Combinatorics | 276 |
Freund L.B. — Dynamic Fracture Mechanics | 33—36 |
Adomian George — Nonlinear stochastic operator equations | 277 |
Saaty T.L. — Elements of Queueing theory with applications | 89 |
Cercignani C. — Theory and Application of the Boltzman Equation | 205, 212, 215, 306, 307, 311,313,314,323 |
Murota K. — Discrete convex analysis | 351 |
Lurie J.B., Enright P.J. — Classical Feedback Control With Matlab | 362 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 91—98, 106 (see also “Fourier transformation”) |
Betten J. — Creep Mechanics | 190, 199, 219—220, 228, 281, 284, 292, 294, 296, 302, 312, 314—315 |
Billingsley P. — Probability and Measure | 285, 293 |
Erdelyi A. — Higher Transcendental Functions, Vol. 2 | 45 ff., 191 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 480 |
Levy M. — Parabolic equation methods for electromagnetic wave propagation | 120 |
Hamming R.W. — Numerical methods for scientists and engineers | 628 |
Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 166, 169, 276 |
Jagerman D.L. — Difference equations with applications to queues | 12 |
Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 133, 179 |
Graff K.F. — Wave motion in elastic solids | 604—14 |
Antia H.M. — Numerical Methods for Scientists and Engineers | 428—431, 468, 632, 737 |
Olver P.J., Shakiban C. — Applied linear. algebra | 363 |
Kreyszig E. — Advanced engineering mathematics | 221, 594 |
Butcher J. — Numerical Methods for Ordinary Differential Equations | 28 |
Neff H.P.Jr. — Introductory electromagnetics | 143 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 278—279, 282 |
Neubrander F. (Ed), Ferreyra G.S. (Ed) — Evolution Equations, Vol. 168 | 395 |
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 155 |
Siegel W. — Fields | VIIC3 |
Knuth D.E. — The art of computer programming (vol. 1 Fundàmental algorithms) | 94 |
Goodman J.W. — Statistical Optics | 344 |
Nayfeh A.H., Pai P.F. — Linear and Nonlinear Structural Mechanics | 13, 374 |
Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)289, 370 |
Prigogine I. — Proceedings of the International Symposium on Transport. Processes in Statistical Mechanics, held in Brussels,. August 27-31, 1956 | 157, 158 |
Bellman R., Kalaba R. — Quasilinearization and nonlinear boundary-value problems | 109 |
Janson S., Rucinski A., Luczak T. — Random Graphs | 25 |
Korevaar J. — Tauberian Theory: A Century of Developments | 192 |
Balakrishnan N. (ed.), Rao C.R. (ed.) — Order Statistics - Theory and Methods | 260, 556 |
Berg C., Christensen J.P., Ressel P. — Harmonic Analysis On Semigroups | 75, 114, 115 |
Kao E. — Introduction to Stochastic Processes | 17 |
Stakgold I. — Boundary value problems of mathematical physics | 38, 206, 218, 236, 249, 401—402 |
Taylor P. — Text-to-Speech Synthesis | 283 |
Kotz S. — Breakthroughs in Statistics (volume 3) | 52, 193, 369 |
Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 2. Numerical simulations) | 66 |
Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 193 |
Blanchard P., Devaney R.L. — Differential Equations | 560 |
van Dijk N. — Handbook of Statistics 16: Order Statistics: Theory & Methods | 260, 556 |
Rektorys K. — Survey of applicable mathematics | 1125-8 |
Simmons G.F. — Differential Equations with Applications and Historical Notes | 390 |
Socha L. — Linearization Methods for Stochastic Dynamic Systems | 71 |
Tannenbaum A. — Invariance and System Theory: Algebraic and Geometric Aspects | 32 |
Grenander U. — Toeplitz Forms and Their Applications | 141 |
Roads Ñ.(ed.) — Musical signal processing | 231, 232 |
Antoulas A.C. — Approximation of Large-Scale Dynamical Systems | 62 |
Rosenstark S. — Feedback Amplifier Principles | 168 |
Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics | 67 |
Adomian G. — Stochastic Systems | 82, 84 |
Goertzel G. — Some Mathematical Methods of Physics | 44—45 |
Marks R.J.II. — The Joy of Fourier | 18, 62, 67, 225, 226, 228, 754 |
Noble B. — Methods based on the Wiener-Hopf technique for the solution of PDEs | 10, 21, 52, 86 |
Tucker A. — Applied Combinatorics | 276 |
Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics | 169, 170, 227, 228 |
Bellman R.E. — Some vistas of modern mathematics: Dynamic programming, invariant imbedding, and the mathematical biosciences | 16, 85, 96, 124, 136 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 417 |
Argyros I. — Computational Theory of Iterative Methods | 10 |
Lee T.H. — Design of CMOS Radio-Frequency Integrated Circuits | 429, 447 |
Bellman R.E., Wing G.M. — An Introduction to Invariant Imbedding | 108, 113, 114, 116, 119, 122, 126, 127, 129—131, 214 |
Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 20, 23, 27, 120, 133, 138, 144, 146, 250—254, see also "Final value theorem" |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 144 |
Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 776 |
Bellman L., Cooke K. L. — Modern elementary differential equations | 88, 189, 202 |
Aliprantis C. — Principles of real analysis | 250 |
Antsaklis P.S., Michel A.N. — Linear Systems | 75, 154 |
Liu C.L. — Introduction to combinatorial mathematics | 51 |
Ashby W.R. — An introduction to cybernetics | 145 |
Eringen A.C., Suhubi E.S. — Elastodynamics (vol. 2) Linear theory | 653, 665, 687, 691, 731, 742, 872, 877, 881 |
Franklin G.F., Workman M.L., Powell J.D. — Digital Control of Dynamic Systems | 12 |
Papoulis A. — The Fourier Integral and Its Applications | 169—191 |
John Strikwerda — Finite difference schemes and partial differential equations | 276, 291 |
Hamming R.W. — Numerical Methods For Scientists And Engineers | 341 |
Dym H., McKean H.P. — Fourier Series and Integrals | 213 |
Hildebrand F.B. — Methods of Applied Mathematics | 272, 274, 321(75) |
Collatz L. — The numerical treatment of differential equations | 273, 369 |
Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 153 |
Fluegge S. (ed.) — Encyclopedia of physics. Vol. 9. Fluid dynamics III | 483, 491 |
De Finetti B. — Theory of Probability. A critical introductory treatment | 284 |
Morse P.M. — Methods of theoretical physics | 467 |
Xiao T-J., Liang J. — The Cauchy Problem for Higher-Order Abstract Differential Equations | 1.1 |
Fox H., Bolton W. — Mathematics for Engineers and Technologists | 198 |
McBride E.B. — Obtaining Generating Functions | 90 |
Tranter C.J. — Integral transforms in mathematical physics | i |
Loomis L.H. — An introduction to abstract harmonic analysis | 74, 179 |
Churchill R.V. — Operational mathematics | 3 |
Siegel W. — Fields | VIIC3 |
Chaikin P., Lubensky T. — Principles of condensed matter physics | 356, 370, 430 |
Leeuwen J.V. — Handbook of Theoretical Computer Science: Algorithms and Complexity | 456 |
Carroll R.W. — Mathematical physics | 44 |
Bellman R. — Perturbation Techniques in Mathematics, Physics, and Engineering | 12, 111, 113 |
Kuttler K.L. — Modern Analysis | 187 |
Stakgold I. — Green's functions and boundary value problems | 163, 487 |
Steiglitz K. — A Digital Signal Processing Primer: With Applications to Digital Audio and Computer Music | 275, 283 |
Leeuwen J. (ed.), Meyer A.R., Nivat M. — Algorithms and Complexity, Volume A | 456 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 1125—1128 |
Ash R. — Basic probability theory | 155 |
Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 2, 235, 236 |
Luenberger D.G. — Introduction to dynamic systems | 272—276, 314 |
Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 139, 742 |
Van Neerven J. — The Adjoint Of A Semigroup Of Linear Operators | A3 |
Bellman R. — Methods of nonlinear analysis (Vol. 2) | 221, 252 |
Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 108 |
Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 70, 197—199, 201—203, 205 |
Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 223 |
Sofo A. — Computational Techniques for the Summation of Series | 4, 7, 31, 32, 42, 74, 88, 102 |
Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 21, 107, 141, 146, 248, 483, 505 |
Strang G. — Introduction to Applied Mathematics | 362, 513, 520, 532 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 346, 386—389, 404, 405 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 281 |
Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 10, 30 |
Jeffreys H. — Methods Of Mathematical Physics | 458 |
Hazewinkel M. — Handbook of Algebra (÷àñòü 1) | 144 |
Cooper R.B. — Introduction to queueing theory | 197 |
Allen A. — Probability, statistics, and queueing theory with computer science applications | 75, 164—171, 176—177 |
Dash J. — Quantitative Finance and Risk Management: A Physicist's Approach | 761 |
Blomberg H.( ed.) — Algebraic theory for multivariable linear systems, Volume 166 | 67—68, 80, 94, 149, 203, 216, 224—226 |
Mittra R., Lee S.W. — Analytical Techniques in the Theory of Guided Waves | 74n |
Wornell G. — Signal Processing with Fractals: A Wavelet Based Approach | 130—132 |
Murray J.D. — Asymptotic Analysis | 86, 96 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 568 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 712—723 |
Sakurai J.J. — Modern quantum mechanics | 435 |
Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 341—342, 351, 470 |
Xiao T.-J., Liang J. — Cauchy Problem for Higher Order Abstract Differential Equations | 1.1 |
Librescu L., Song O. — Thin-Walled Composite Beams:Theory and Application | 125, 143, 173, 508, 512 |
Librescu L., Song O. — Thin-Walled Composite Beams:Theory and Application | 125, 143, 173, 508, 512 |
Treves F. — Topological Vector Spaces, Distributions And Kernels | 277 |
Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 59 |
Kaufmann A. — Graphs, dynamic programming, and finite games | 351 |
Miller K.S., Ross B. — An Introduction to the Fractional Calculus and Fractional Differential Equations | 28, 321 |
Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications | 443—447 |
Lee A. — Mathematics Applied to Continuum Mechanics | 363 |
Dynkin E. — An Introduction to Branching Measure-Valued Processes | 12 |
De Barra G — Measure theory and integration | 191 |
Pazy A. — Semigroups of linear operators ans applications to PDE | 25 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 213 |
Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 1) | 418 |
Kanwal R.P. — Generalized functions: Theory and technique | 199 ff |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 305, 306, 329 |
Zorich V.A., Cooke R. — Mathematical analysis II | 612 |
Cheney W. — Analysis for Applied Mathematics | 24, 287 |
Zorich V. — Mathematical Analysis | 612 |
Reichl L.E. — Modern Course in Statistical Physics | 548, 616, 626 |
Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)289, 370 |
Moiseiwitsch B.L. — Integral Equations | 1, 24, 31, 34, 36, 38 |
Buckmaster J. — The Mathematics of combustion | 167, 168, 170, 206 |
Apostol T. — Mathematical Analysis, Second Edition | 326, 342, 468 |
Kline M. — Mathematical thought from ancient to modern times | 1052 |
Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 41[2.2.6], 80[3.2.2] |
Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions | 16, 218, 228, 229, 231, 236, 237, 261, 280, 358, 468 |
Serra J. — Image Analysis and Mathematical Morphology | 288, 534 |