Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Kilbas A., Srivastava H.M. — Theory and Applications of Fractional Differential Equations
Kilbas A., Srivastava H.M. — Theory and Applications of Fractional Differential Equations



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Theory and Applications of Fractional Differential Equations

Àâòîðû: Kilbas A., Srivastava H.M.

Àííîòàöèÿ:

This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus.

The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering.

Some of the areas of present-day applications of fractional models include Fluid Flow, Solute Transport or Dynamical Processes in Self-Similar and Porous Structures, Diffusive Transport akin to Diffusion, Material Viscoelastic Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control Theory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Economics, Geology, Astrophysics, Probability and Statistics, Chemical Physics, and so on.

In the above-mentioned areas, there are phenomena with estrange kinetics which have a microscopic complex behaviour, and their macroscopic dynamics can not be characterized by classical derivative models.

The fractional modelling is an emergent tool which use fractional differential equations including derivatives of fractional order, that is, we can speak about a derivative of order 1/3, or square root of 2, and so on. Some of such fractional models can have solutions which are non-differentiable but continuous functions, such as Weierstrass type functions. Such kinds of properties are, obviously, impossible for the ordinary models.

Whatare the useful properties of these fractional operators which help in the modelling of so many anomalous processes? From the point of view of the authors and from known experimental results, most of the processes associated with complex systems have non-local dynamics involving long-memory in time, and the fractional integral and fractional derivative operators do have some of those characteristics.

This book is written primarily for the graduate students and researchers in many different disciplines in the mathematical, physical, engineering and so many others sciences, who are interested not only in learning about the various mathematical tools and techniques used in the theory and widespread applications of fractional differential equations, but also in further investigations which emerge naturally from (or which are motivated substantially by) the physical situations modelled mathematically in the book.

This monograph consists of a total of eight chapters and a very extensive bibliography. The main objective of it is to complement the contents of the other books dedicated to the study and the applications of fractional differential equations. The aim of the book is to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy type problems involving nonlinear ordinary fractional differential equations, explicit solutions of linear differential equations and of the corresponding initial-value problems through different methods, closed-form solutions of ordinary and partial differential equations, and a theory of the so-called sequential linear fractional differential equations including a generalization of the classical Frobenius method, and also to include an interesting set of applications of the developed theory.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 540

Äîáàâëåíà â êàòàëîã: 22.05.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$\alpha$-Exponential functions      50—51 53
$\alpha$-Wronskian of n functions      395
Absolutely continuous function      1—3 92
Amorphous polymer      440
Analytic continuation      27 86 120
Asymptotic behavior      28—29 31 33—35 39—41 43 54—56 61—62 349
Banach space      4 5 360—361
Basset's problem      434—435
Bessel function of the first kind      17 32—35 55 65—66 342
beta function      26
Binomial coefficients      26
Burger's model      440—441
Caputo fractional derivatives      91—93 97 99 230 312 322—323 418
Caputo sequential fractional derivative      421 445
Cauchy type problem      135—140 144—145 147—148 150—160 162—177 179—186 191—192 195—198 211—219 222—228 234—238 251—256 266—270 275 277 282 309—311 327 349 353—354 356 358—359 362 364—366 368 370—371 373 380 388 407 415 450 462 468
Commutative property      11 13 19—20 22—23
Compact support      7—9 83 89 131 355
Complex conjugate solutions      402 431
Composition relations      74
Continuous embedding      5
Continuous global solution      411 414
Delayed elasticity      441
Differential operator      380
Dirac function      7 9 16 23 44 133 350 451 459 462—463 466
Elastic region      439
Elastic response      440
Erdelyi — Kober type fractional operators      105—106 108—109 143—144 270 352 457
Euler gamma function      24—27 36 38 69 289 368 372 388—389 456
Euler integral      24 26—27
Euler psi function      16 23 26
Euler transformation formula      28
Exponential weight      88
Fourier convolution operator      11 13 127 341
Fourier convolution theorem      12 13 128
Fourier integrals      10 13
Fourier transform      10—18 20 44 90 121 127—128 131—133 341—342 353—356 358—359 361—364 366—368 374 376—381 383—384 388 437 442—443 453 458—459
Fractal      349 350 357 439 451 453—454
Fractional damping      433 436—437
Fractional derivative      69—80 83—105 108—112 115—127 130—131 135 138 140—145 162—163 172 176 182 199 205 208 212 221—222 230 234 238—242 245—247 251 256—257 261 264—279 283 295 311—312 322—323 329—331 336 341 344—355 358—362 373 379 380 384 393 409 415—418 426 431—434 442—452 455—462
Fractional Green function      359 373 379 393 403 407 409 412
Fractional integral      69 74—80 83—84 86—87 90 99—100 103—106 108—114 116—117 119 123—127 154 157 163 168 189 238 261—263 272 276 352 359 449—452 456—457 464
Fractional integration by part      76 83 107
Fractional relaxation      435 455
Fractional sequential derivative      394—395 397
Frobenius method      394 415 417 429
Fundamental system of solutions      283—285 288—291 293—294 312—316 319—321 396 399—400 402—403 410
Gauss hypergeometric function      27—28 30 132 143 350
Gauss — Legendre multiplication theorem      25
Gauss — Weierstrass transforms      130
Generalized functions      6—10 14—16 23 133 143 351
Generalized hypergeometric functions      27 30—32 45 58 65 353
Generalized Stirling numbers      115
Gruenwald-Letnikov fractional derivatives      121—122 443 458
H-function      58—65 352—354 368—369 371—372 379 388
Hadamard type fractional derivatives      111 113 115—116 119—120 122 123
Hadamard type fractional integral      110—114 116 119
Hardy — Littlewood theorem      72 82 88 128
Holderian functions      129
Homogeneous linear FDE      132 142 144 197 224—225 231—232 235—236 239 242 252 256—257 276 280—281 283 295 302—303 309 311—312 322—323 326 359 393—394 396—397 399—400 403 406—410 415 424 427 435 466—467
Hypergeometric series      27 29—30
Hypersingular integral      130—132 458
Incomplete gamma functions      27 289
Incompressible viscous fluid      433—434
Instantaneous deformation      440
Integral representations      29 34—35
Kummer confluent hypergeometric function      29 45
Kummer hypergeometric functions      29—30 65
Laplace convolution theorem      20
Laplace transform      18—19 23 31 36 42 44 47—48 50 52 55 58 84 98 140 279—284 287 291 295 303—304 306 311—312 315 322—323 329 336 340 350 352—353 356—357 362—364 366—370 373—377 380—381 384 393 400 402—405 435—436 442 451 465
Laws of thermodynamics      443
Lebesgue measurable functions      1—3 79 151
Left-sided and right-sided Caputo fractional derivatives      91
Left-sided difference      121
Left-sided Gruenwald — Letnikov fractional derivative      122
Left-sided Liouville fractional derivative      88 336 338
Legendre duplication formula      25 390
Linearly independent solutions      28 34 36 244 281 283 286 288—291 293 294—295 315—316 318 320 401 408 429 432—433
Liouville fractional derivatives      80 83 87 89—90 101—103 105 127 239 245 257 266 270 279 283 295 322—323 329
Liouville fractional integrals      78—79 83—84 86—87 90 100 106 127 163 189 261 263 359
Liouville left- and right-sided fractional operators      80 87 338
Lizorkin space      9 128 131
Logarithmic derivative      26
Marchaud fractional derivatives      122 458
Mellin convolution operator      22—23 330—331
Mellin convolution theorem      23
Mellin transform      18 20—24 31—32 34 36—39 41 44 46 48 54 57 84 99 104 109 119—120 283 329—330 332 337 346 352—353
Mellin-Barnes contour      27 30 33—35 38—39 41 43 46—48 54—55 57—58
Minkowski inequality      113
Mittag — Leffler Functions      40—42 44—46 48—50 55 66—67 78 86 98 137 141—142 144 223 226 237—239 250 265 270 272 280 284 295 308—309 312 355 361 381 383 394 416 439 451
N-dimensional Fourier transform      12 17
n-dimensional Laplace transform      13 19
n-dimensional Mellin transform      22
Non-Constant or Varible Coefficients linear FDE      394 409 415 417
Non-Homogeneous linear FDE      132 245 251 256 279—281 295 302—303 310—311 322—323 327 329 341 344 346 392 394 400 403—410 412 435
Non-Sequential Linear FDE      407 433
Operational decomposition method      142 405
Operational methods      141 260 270 402—404 413
Partial Liouville fractional derivatives      348
Partial Riemann — Liouville fractional operators      78 123—124 273 348 350—351 355 359 362 464
Pochhammer symbol      24 27 45
Positive monotone function      99 456
Purely imaginary order      71 80 87
Riemann — Liouville fractional integration      71 95 136 187 323
Riemann-Liouville fractional derivatives      70—71 90—95 93—95 124—126 138 143 222 242 251 348 351
Riesz      127—131 279 341 344 359 458—459
Right-sided mixed Riemann — Liouville fractional integrals      124—126
Right-sided partial Riemann — Liouville fractional derivatives      124
Schwartz space      8 10 354
Semigroup properties      51 53 73 75 83 96 101 107 114 121 128 261
SEQUENTIAL      138 140 270 282 393—397 407—408 410 412 415 421 427 431 433—435 437 445
Sequential FDE      282 393—397 427 433—435 437
Singular Points for linear FDE      416—417 424—427 429—431
Sobolev theorem      128
Stirling      25 115 475 521
Substitution operator      100 456
Systems of linear FDE      294 393 474
Tempered distributions      8
Transition region      439
Truncated hypersingular integral      132
Viscoelastic material      442 519
Viscoelasticity      347 439
Vitreous region      439
Weighted $L_p$-space      1 129
Wright function      42 44 47 54—58 67 286 291 297 299 303 305 314 319 331 336 356 364 366 374
Young theorem      11 13
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå