| 
    
	    
	    | 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Miklowitz J. — The theory of elastic waves and waveguides |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | |  function, integral representation for      329 
  function, Lapwood's integral representation for      330 Acceleration      43
 Acoustics      17
 Additional effects      576—578
 Airy function      388 423 429 438
 Airy function, derivatives of      437
 Amplitude of P wave      121
 Amplitude of SH wave      154
 Amplitude of SV wave      121
 Amplitude ratios      see Reflection coefficients; Transmission coefficients
 Analytical continuation of functions, use of      286
 Angle, critical      132 139—144 163—164
 Angle, incident      120—121 155—156
 Angle, reflection      120—131 155—156
 Angle, refraction      157 161 165
 Anharmonic overtones, infinite plate      See Modes thickness
 Anisotropic media, for Lamb's problem of a transversely isotropic half space      576
 Anisotropic media, for waveguides      576
 Anisotropic media, recent work, surveys on      576
 Anisotropic media, surfaces of      3
 Anisotropic media, waves in, early work, surveys on      576
 Anomalous dispersion      187
 Anomalous dispersion in transient response of a plate      421
 Antiplane, displacement source problem, infinite solid      363—364
 Antiplane, displacement-potential relations of      153 154
 Antiplane, gauge condition in      153
 Antiplane, SH waves of      152—156 170—174
 Antiplane, shear deformation      152. See also SH wave Wave
 Antiplane, strain-potential relations of      154
 Antiplane, stress-potential relations of      154—155
 Antiplane, tangential surface load problem, half space      363
 Antisymmetric edge load problems, plate, rod, semi-infinite      435
 Antisymmetric edge load problems, plate, semi-infinite      435
 Antisymmetric line loads, problem of, plate, infinite      429—430
 Approximate theories, waveguide      See Waveguides approximate
 Asymptotic expansions      250—277
 Asymptotic expansions of integrals      255—277
 Asymptotic expansions of integrals, integrals in      256
 Asymptotic expansions of integrals, integrals in, critical points of      256
 Asymptotic expansions of integrals, integrals in, Fourier      256
 Asymptotic expansions of integrals, integrals in, integrand conditions of      256
 Asymptotic expansions of integrals, integrals in, Laplace      256
 Asymptotic expansions of integrals, methods for, Cagnard — deHoop technique, method in, applications of      319—323 438—443
 Asymptotic expansions of integrals, methods for, Laplace's method      262—264
 Asymptotic expansions of integrals, methods for, Laplace's method, applications of      268 325;
 Asymptotic expansions of integrals, methods for, parts integration      257 261—262
 Asymptotic expansions of integrals, methods for, parts integration, application of      251
 Asymptotic expansions of integrals, methods for, stationary phase, method of      271—275
 Asymptotic expansions of integrals, methods for, stationary phase, method of, applications of      275—277 387—388 404—408 423—424 470—474
 Asymptotic expansions of integrals, methods for, steepest descents, method of      264—270
 Asymptotic expansions of integrals, methods for, steepest descents, method of, applications of      323—328 550—551
 Asymptotic expansions of integrals, methods for, Van der Waerden's method      270
 Asymptotic expansions of integrals, methods for, Van der Waerden's, application of      270
 Asymptotic expansions of integrals, methods for, Watson's lemma      257
 Asymptotic expansions of integrals, methods for, Watson's lemma, applications of      260 326 327—328
 Asymptotic expansions, nature of      251—252
 Asymptotic expansions, Poincare's definition of      252—253
 Asymptotic expansions, properties of      253—255
 Asymptotic expansions, properties of, differentiation      255
 Asymptotic expansions, properties of, integration      254—255
 Asymptotic expansions, properties of, product, quotient, sum      254
 Asymptotic expansions, properties of, uniqueness      253—254
 Axially symmetric compressional waves in circular cylindrical rod      220—223
 Axially symmetric diffraction problems for spherical cavity      565—567
 Axially symmetric plate problems      470—476
 Axially symmetric torsional waves in circular cylindrical rod      217—220
 Axially symmetric torsional waves in thin plate      290
 Axially symmetric vertical point load problem, half space      333—348
 Axially symmetric waves      68 338—348 470—476
 Bar velocity      222
 Bernoulli — Euler beam (bending theory)      6 8. approximate
 Bessel functions, modified      283 523—525 562—565
 Bessel functions, modified, asymptotic expansions of      283
 Bessel functions, modified, Hankel function relation      287
 Bessel functions, ordinary, asymptotic expansion of      469
 Bilateral Laplace transform      241—242
 Bilateral Laplace transform in cylindrical cavity diffraction problem      537—542
 Bilateral Laplace transform, properties of      242
 Body force problems      78—94
 Body force problems, center of compression in      91—92
 Body force problems, center of rotation in      92—93
 Body force problems, distributed source of potentials in      83—84
 Body force problems, distributed source of potentials in, retarded potential solutions for      84 88 94
 Body force problems, double forces in      91—93
 Body force problems, early work on      4
 Body force problems, general solution for displacement in      84—85
 Body force problems, governing inhomogeneous wave equations for      80
 Body force problems, line source of potentials in      85
 Body force problems, line source of potentials in, solution for      86
 Body force problems, point load in      86—91
 Body force problems, point load in, dilation solution for      90
 Body force problems, point load in, displacement solution for      89
 Body force problems, point load in, rotation solution for      90
 Body force problems, point load in, stress solution for      90
 Body force problems, point load in, wavefronts, ramp input, for      90—91
 Body force problems, point load in, waves generated by      90
 Body force problems, point source of potentials, in      83—84
 Body force problems, point source of potentials, in, solutions for      82—83
 Body force problems, time harmonic      93
 Body waves in bounded media      68—69
 Body waves in bounded media, cylindrical wave surfaces of      69
 Body waves in bounded media, generation of interface waves by      68—69
 Body waves in bounded media, interference of      69
 Body waves in bounded media, reflection and refraction of      69
 Body waves, fundamental      57—63
 Body waves, fundamental, dilatation      58
 Body waves, fundamental, dilatational displacement      58
 Body waves, fundamental, equivolumnal displacement      57—58
 Body waves, fundamental, governing equations for      57—63
 Body waves, fundamental, propagation speeds for      57—58
 Body waves, fundamental, rotation      58
 Body waves, time harmonic      69—70
 Body waves, time harmonic, axially symmetric      70
 Body waves, time harmonic, frequency of      69
 Body waves, time harmonic, Helmholtz equations for      69
 Body waves, time harmonic, nodal points of      70
 Body waves, time harmonic, standing      70
 Body waves, time harmonic, trains of      70
 Body waves, time harmonic, wave number of      69
 Body waves, time harmonic, wavelength of      69
 Body waves, types of      63—68
 Body waves, types of, axially symmetric      68
 Body waves, types of, nonaxially symmetric      68
 Body waves, types of, plane      63—67
 Body waves, types of, spherically symmetric      67
 Boundary-initial value problems fundamental      46—47
 Boundary-initial value problems fundamental, integral representations in      94—96
 Boundary-initial value problems fundamental, integral representations in Kirchhoff's formula      95
 Boundary-initial value problems fundamental, integral representations in Love's formula      95—96
 Boundary-initial value problems fundamental, integral transform methods in      see Integral transform methods
 Boundary-initial value problems fundamental, method of characteristics in      112—115
 Boundary-initial value problems fundamental, uniqueness of solutions of      3 47 50—51
 Boundary-initial value problems fundamental, uniqueness of solutions of, discontinuous loadings      52
 Boundary-initial value problems fundamental, uniqueness of solutions of, finite body      47 50—51
 Boundary-initial value problems fundamental, uniqueness of solutions of, infinite anisotropic body      51
 Boundary-initial value problems fundamental, uniqueness of solutions of, infinite body      51
 Boundedness condition, solution, algebraic      452 461
 Boundedness condition, solution, algebraic, approximation corresponding to long time      454—455 462
 Boundedness condition, solution, for semiinfinite plate with nonmixed edge conditions      446—448 461—462
 Boundedness condition, solution, integral equations representing      448
 Branches of frequency equations for, plate, approximations      369 381 475
 Branches of frequency equations for, plate, infinite      7. See also Rayleigh — Lamb frequency equation
 Branches of frequency equations for, rod, approximations      7—8 219 368—369 381
 Branches of frequency equations for, rod, infinite circular cylindrical      7. See also Pochhammer frequency equations
 Bromwich contour      236
 Bulk modulus (Modulus of compression)      41
 Buried line dilatational source in half space      329—332
 Cagniard — deHoop method in half plane diffraction problem      490 492—496 498—499 504—516
 Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem      351—360
 
 | Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem, displacements in      357—360 Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem, integral equations for      356 358 359
 Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem, integration paths in, deformed      353 357—358
 Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem, Laplace transformed      355—356 359
 Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem, principal value integrals in      359
 Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem, singularities and controur integrations in      352—355 357—359
 Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem, transformations in, basic      351 352 357 358—359
 Cagniard — deHoop method, for nonaxymmetric, surface normal point traveling load problem, wavefront approximations in      361
 Cagniard — deHoop method, for plane-strain problems      302—319 329—332
 Cagniard — deHoop method, for plane-strain problems, displacements in      312—314
 Cagniard — deHoop method, for plane-strain problems, integral equations for      310 312
 Cagniard — deHoop method, for plane-strain problems, integration paths in, deformed      303—306 307—308 311
 Cagniard — deHoop method, for plane-strain problems, Laplace transformed      307 309 310 311—312
 Cagniard — deHoop method, for plane-strain problems, principal value integrals in      311
 Cagniard — deHoop method, for plane-strain problems, singularities, contour integration in      303—306
 Cagniard — deHoop method, for plane-strain problems, transformations in, basic      302 303
 Cagniard — deHoop method, for plane-strain problems, wavefront approximations in      319—323
 Cagniard's method, early use of      5
 Calculus of variations, use of      369—373
 Carrier wave      187
 Carrier wave, modulation of      187
 Carrier wave, modulation of, frequency of      187
 Carrier wave, of simple wave group      187
 Cauchy problems      See Initial value problem
 Cauchy — Goursat theorem, use of      259 286
 Caustic      557 559
 Caustic, singular stress at      558. See also Focusing wave
 Cavity source problems      277—290
 Cavity source problems, boundary-initial value problem      278
 Cavity source problems, boundary-initial value problem, displacement-potential relation      279
 Cavity source problems, boundary-initial value problem, Laplace transform solution method      278—281
 Cavity source problems, boundary-initial value problem, solution      281
 Cavity source problems, boundary-initial value problem, solution, response of stresses in      282
 Cavity source problems, boundary-initial value problem, solution, static      281
 Cavity source problems, boundary-initial value problem, solution, verification of      181
 Cavity source problems, boundary-initial value problem, solution, wavefronts of      281
 Cavity source problems, boundary-initial value problem, stress-potential relation      279
 Cavity source problems, circular cylindrical cavity in plate, Kromm's solution method      290
 Cavity source problems, circular cylindrical cavity in plate, uniform pressure on      282—290
 Cavity source problems, circular cylindrical cavity in plate, uniform shear stress, rotary velocity on      290
 Cavity source problems, circular cylindrical cavity, decaying uniform pressure on      290
 Cavity source problems, circular cylindrical cavity, uniform, boundary-initial value problem      283
 Cavity source problems, circular cylindrical cavity, uniform, displacement-potential relation      284
 Cavity source problems, circular cylindrical cavity, uniform, Laplace transform solution method      283—287
 Cavity source problems, circular cylindrical cavity, uniform, Laplace transform solution method, singularities, contour integration in      284—287
 Cavity source problems, circular cylindrical cavity, uniform, pressure in      282—290
 Cavity source problems, circular cylindrical cavity, uniform, solution      286—287
 Cavity source problems, circular cylindrical cavity, uniform, solution by method of characteristics      290
 Cavity source problems, circular cylindrical cavity, uniform, solution, static      289
 Cavity source problems, circular cylindrical cavity, uniform, solution, stress responses in      287
 Cavity source problems, circular cylindrical cavity, uniform, solution, verification of      288
 Cavity source problems, circular cylindrical cavity, uniform, solution, wavefronts in      289—290
 Cavity source problems, circular cylindrical cavity, uniform, stress-potential relations      284
 Cavity source problems, spherical cavity, nonsymmetric sources      282
 Cavity source problems, spherical cavity, uniform pressure on      277—282
 Center of compression      91
 Center of rotation      92
 Characteristic length      1
 Characteristics      75
 Characteristics, method of      107—115
 Characteristics, method of, for one-dimensional problems      107—115
 Characteristics, method of, for one-dimensional problems, boundary-initial value problems, numerical method      112—115
 Characteristics, method of, for one-dimensional problems, characteristic condition in      109
 Characteristics, method of, for one-dimensional problems, characteristic directions in      109
 Characteristics, method of, for one-dimensional problems, first hyperbolic theorem, initial values, numerical method      110—112
 Characteristics, method of, for one-dimensional problems, second hyperbolic theorem, initial values, numerical method      112
 Characteristics, method of, for one-dimensional problems, uniqueness of solution      112
 Characteristics, method of, for one-dimensional problems, use of      290
 Characteristics, method of, for two-dimensional problems      115
 Characteristics, theory of      17. See also Wavefronts; propagating
 Coefficients of reflection      123
 Coefficients of transmission      160
 Completeness of Lame solution      3 61—62 116
 Composite materials, waves in, monographs on      577
 Compressional waves in a thin circular cylindrical rod, approximate theories for      367—369 371—374 392—393
 Compressional waves in a thin circular cylindrical rod, longitudinal impact, generated by      388—389 393
 Compressional waves in a thin plate with circular cylindrical cavity, cavity wall pressure, generated by      287
 Compressional waves in an infinite plate with circular cylindrical cavity, cavity wall normal displacement, generated by      474
 Compressional waves in an infinite semi-infinite circular cylindrical rod, end load, generated by      466
 Compressional waves in an infinite semi-infinite circular cylindrical rod, frequency equations for      221
 Compressional waves in an infinite semi-infinite circular cylindrical rod, frequency spectra for      208—209 222
 Compressional waves in an infinite semi-infinite circular cylindrical rod, motion generated by      222—223
 Compressional waves in an infinite semi-infinite circular cylindrical rod, potential modes for      221
 Compressional waves in an infinite semi-infinite circular cylindrical rod, shock tube excitation of      390—393 437
 Compressional waves in an infinite solid generated by cavity pressure sources, circular cylindrical      287
 Compressional waves in an infinite solid generated by cavity pressure sources, spherical      282
 Compressional waves in an infinite, semi-infinite plate, cylindrical dilatational, equivolumnal wave surfaces in      179—180 210
 Compressional waves in an infinite, semi-infinite plate, frequency equations for      183 197
 Compressional waves in an infinite, semi-infinite plate, frequency equations for, branches of      197—201
 Compressional waves in an infinite, semi-infinite plate, frequency spectra for      185 198 202
 Compressional waves in an infinite, semi-infinite plate, longitudinal impact, generated by      436—437
 Compressional waves in an infinite, semi-infinite plate, mixed edge pressure, generated by      436—437
 Compressional waves in an infinite, semi-infinite plate, near base normal line loads, cantilever, generated by      465
 Compressional waves in an infinite, semi-infinite plate, nonmixed edge line load, generated by      463—465
 Compressional waves in an infinite, semi-infinite plate, nonmixed edge pressure, generated by      455—457
 Compressional waves in an infinite, semi-infinite plate, nonmixed edge velocities, generated by      465—466
 Compressional waves in an infinite, semi-infinite plate, normal line loads, generated by      420—422
 Compressional waves in an infinite, semi-infinite plate, normal point loads, generated by      470—472
 Compressional waves in an infinite, semi-infinite plate, P, SV waves in      178—180
 Compressional waves in an infinite, semi-infinite plate, phase velocity spectra for      185
 Compressional waves in an infinite, semi-infinite plate, thermal field, generated by      475—477
 Compressional waves in an infinite, semi-infinite plate, thickness modes in      185
 Conical flows, Buseman's method of      517. See also Self-similar solutions
 Conical, waves      358 360—361
 Convolution theorem of exponential Fourier tranform      245
 Convolution theorem of Laplace transform      239
 Convolution theorem, use of      313 541—542
 Coordinates, cylindrical      68
 Coordinates, rectangular Cartesian      19 42
 Coordinates, spherical      67
 Cusp-type wavefronts in anisotropic plates      443
 Cutoff frequencies for plate, with mixed face conditions      188
 Cutoff frequencies for plate, with mixed face conditions, group velocities at      189
 Cutoff frequencies for plate, with mixed face conditions, P, SV waves at      189
 Cutoff frequencies for plate, with mixed face conditions, phase velocities at      189
 Cutoff frequencies for plate, with traction free faces      203—204
 Cutoff waves, influence of in transient response of a plate      420 475—477
 Cylindrical shell, circular, time harmonic waves in      226
 Cylindrical waves, circular      68 70 77—78 286—289
 Cylindrical waves, in diffraction      485—487 494—495 515—517
 Cylindrical waves, in half space      314 316 319 331—332
 Cylindrical waves, in plates      69 180—186 188—214 420—422 440—443 456—457 464—465
 D'Alembert's principle      43 375
 D'Alembert's solution for one-dimensional initial value problem      63—64
 Deformation      30—38
 Deformation and motion, description of Eulerian (spatial)      19
 Deformation and motion, description of Lagrangian (material)      19—20
 Deformation, finite      31
 Deformation, infinitesimal      32
 Deformation, pure      34 35—36
 Delta functions, Dirac      80—82 240
 Delta functions, Dirac, derivatives of      81
 Delta functions, Dirac, for cartesian coordinates      81
 Delta functions, Dirac, for spherical coordinates      81—82
 Delta functions, Dirac, Laplace transform of      241
 Delta functions, Dirac, symmetrical      300
 Diffraction problems, elastic pulse by circular cylindrical obstacle      517—560
 Diffraction problems, elastic pulse by circular cylindrical obstacle, Friedlander's representation of solution      520—521
 Diffraction problems, elastic pulse by circular cylindrical obstacle, Friedlander's representation of solution, Poisson's summation formula      520—521
 Diffraction problems, elastic pulse by circular cylindrical obstacle, Friedlander's representation of solution, Riemann surface in      0; interpreted as 521
 Diffraction problems, elastic pulse by circular cylindrical obstacle, Friedlander's representation of solution, wave sum in      521
 Diffraction problems, elastic pulse by circular cylindrical obstacle, Friedlander's representation of solution, waveform of function in      521
 Diffraction problems, elastic pulse by circular cylindrical obstacle, line source by circular cylindrical cavity      518—536
 Diffraction problems, elastic pulse by circular cylindrical obstacle, line source by circular cylindrical cavity, diffracted wavefront, ray      518—519
 Diffraction problems, elastic pulse by circular cylindrical obstacle, line source by circular cylindrical cavity, illuminated zone      518—519
 Diffraction problems, elastic pulse by circular cylindrical obstacle, line source by circular cylindrical cavity, incident wavefront, ray      518
 Diffraction problems, elastic pulse by circular cylindrical obstacle, line source by circular cylindrical cavity, limiting cases of      519—520
 Diffraction problems, elastic pulse by circular cylindrical obstacle, line source by circular cylindrical cavity, reflected wavefront, ray      518
 Diffraction problems, elastic pulse by circular cylindrical obstacle, line source by circular cylindrical cavity, shadow zone      518
 Diffraction problems, elastic pulse by circular cylindrical obstacle, line source by circular cylindrical cavity, source of diffracted wavefront      519
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |  
    |  |  |  |  |