Авторизация
Поиск по указателям
Levin B.Ya. — Lectures on entire functions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Lectures on entire functions
Автор: Levin B.Ya.
Аннотация: The aim of the monograph is to expose the main facts of the theory of entire functions and to give their applications in real and functional analysis.
The general theory starts with fundamental results on the growth of entire functions of finite order, their factorization according to Hadamard's theorem, properties of the indicator, and theorems of the Phragmen-Lindelof type.
Numerous applications include Riesz' bases formed by exponential functions, completeness and minimality of special systems of functions, quasianalyticity of lacunar Fourier series and infinitely differentiable functions, the Titchmarsh convolution theorem, mean-periodic functions, interpolation in spaces of entire functions, the uniqueness problem for Fourier series and infinitely differentiable functions, Bernstein's inequality for the derivative of an entire function, and some properties of Banach algebras.
No special knowledge is required to read this book, except for a standard course of the theory of functions of one complex variable.
The monograph will be useful for graduate students studying the theory of analytic functions, as well as for research mathematicians.
Язык:
Рубрика: Математика /Анализ /Комплексный анализ /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 248
Добавлена в каталог: 18.01.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-set 86
Agmon S. 161
Ahlfors L. 78 191
Ahlfors theorem 191
Akhiezer N. I. 162 189 227 230 235 236
Approximate identity 139
Avetisyan A. E. 51
Azarin V. S. 78 96 113 119
Babenko K. I. 200 204 206
Babenko — Dzhrbashyan theorem on nontriviality of class 206
Babenko’s theorem 200
Ber G. Z. 159 162
Berenstein C 124
Bernstein interference theorem 162
Bernstein S. N. 150 160 162 227 236
Bernstein V. 55
Bernstein’s inequality 227
Bernstein’s inequality, generalized 232
Beurling A. 40 122 132 133 195 197 213
Beurling’s theorem 197
Bieberbach L. 73
Blaschke product 104
Blaschke W. 104
Boas R. P. 160 162
Boas — Bernstein interpolation theorem 160
Bonsall F. F. 236 238
Borel E. 18 28 30 65
Borel transform 65 69
Borichev A. A. 119
Bourbaki N. 41
Browder A. 236
Brudnyi Yu. A. 41
Caratheodory C. 75
Caratheodory’s inequality 75
Carleman T. 105 107 187 209 213
Carleman — Ostrowski theorem 106
Carleman, formula 187
Carleman, transform 122
Carleman’s theorem 105
Carlson F. 58 71 189
Carlson, analytic continuation theorem 71
Carlson, uniqueness theorem 58
Cartan H. 12 76 78
Cartan’s estimate 77
Cartwright class 97 115
Cartwright M. L. 127 160
Cartwright — Levinson theorem 127
Cartwright’s theorem 160
Chebotarev N. G. 221 222 225
Class, -quasianalytic 105
Class, 204
Class, 199
Class, (I)-quasianalytic 15
Class, C 115
Class, P 217
Completeness of a system of exponentials 19 84 132
Completeness of a system of functions 22
Completeness, twofold 181
Continuation analytic 70
Davydova E. 161
de Branges L. 130 220
Density, angular 95
Density, lower 17
Density, maximal 132
Density, upper 17
Din Than Hoa 162
Domar Y. 119
Duffin R. J. 230
Duncan T. 238
Dzhavadov M. G. 183
Dzhrbashyan M. M. 51 166 195 204 206
Dzhrbashyan uniqueness theorem 196
Dzhrbashyan’s theorem on triviality of class 199
Element Hermitian 236
Entire function of completely regular growth 94
Entire function of exponential type (EFET) 4
Entire function of finite order 3
Entire function of integer order 32
Entire function of noninteger order 31
Entire function with zeros on a ray 81
Entire function, admitting a lower bound 209
Entire function, sine-type 163
Entire functions with values in Banach algebras 40
Eremenko A. E. 165 Essen M.
Evgrafov M. A. 40
Exponent of convergence 17
Function, -trigonometric 53
Function, -trigonometrically convex 54
Function, admitting positive harmonic majorant 102
Function, counting 10
Function, counting for half-plane 188
Function, harmonic in the upper half-plane 209
Function, harmonic, positive 100
Function, logarithmically subharmonic 50
Function, mean periodic 121
Function, subharmonic 45
Function, supporting 63
Functional analytic 73
Garnett J. B. 141 145 146 179
Gasymov M. G. 183
Gauss theorem 231
Gelfand and Shilov uniqueness problem 204
Gelfand I. M. 41 42 44 119 199 204 237
Gelfand problem on invariant subspaces 119
Gelfond A. O. 22
Genus of a canonical product 26
Genus of an entire function 27
Gohberg I. Z. 121 169 171 184 215
Goldberg A. A. 13 57 118 149 188
Golovin V. D. 170
Golovin’s theorem 170
Gorin E. A. 41 78 238
Govorov N. V. 57
Grabb M. T. 236
Grishin A. Ph. 57 113 149
Gurarii V. P. 183
Hadamard factorization theorem 26
Hadamard J. 18 26 31 48 105
Hardy G. H. 50 60
Hardy space 137
Hardy’s theorem 60
Harmonic majorant principle 46
Havin V. P. 195
Hayman W. K. 13 40 45 49 57 97 109 112 113
Hayman’s theorem 109
Herglotz G. 99
Hermite Ch. 222
Hermite — Biehler theorem 222
Hermite — Biehler theorem, generalized 222
Higgins J. R. 151
Hilbert transform 145
Hilbert transform, discrete analogs 159
Hormander L. 197
Hruscev S. V. 178
Indicator diagram 65
Indicator diagram, conjugate 65
Indicator function 53
Ingham A. 177
Ingham’s theorem 177
Interference phenomenom 162
Jensen formula 10 48
Jensen formula, generalized 125
Jensen J. L. W. V. 9 10 48
Joricke B. 195
Kadets M. I. 172
Kahane J.-P. 124
Katsnelson V. E. 172 236
Katsnelson’s theorem on Riesz base of exponentials 172
Katsnelson’s theorem on spectral radius of Hermitian element 236
Katznelson Y. 203
Keldysh M. V. 181
Kennedy P. B. 45 49
Khabibullin B. N. 85 130
Kheifits A. I. 168
Khurgin Ya. I. 151
Kjellberg B. 40
Koldobskii A. L. 78
Koosis P. 16 130 133 135 141 145 146
Korevaar J. 135
Kostyuchenko A. G. 183
Kotelnikov V. 151
Krasichkov-Ternovskii I. F. 133 212
Krein M. G. 44 115 118 121 169 171 184 215 218 220 222
Krein simple fractions series theorem 116
Krein’s theorem on functions of class C 115
Krein’s theorem on meromorphic functions with interlacing zeros and poles 220
Laguerre E. 28 220
Landkof N. S. 49 78
Laplace transform 67
Le Page C. 41 43
Leau L. 72
Legendre transform 195
Leontev A. F. 84 149
Levin B. Ya. 16 55 78 96 149 161 162 168 220 225 236
Levinson N. 16 127 135 213
Lindelof E. 1 33 37 55 93
Lindelof’s theorem 33 93
Logvinenko V. 161
Lower bound for harmonic function 76
Lower bound for logarithmic potential 77
Lower bound for the modulus of an analytic function 79
Luxemburg W. A. J. 51
Lyubarskii Yu. I. 184
Lyubich Yu. I. 107 122
Malliavin P. 85 132 133 161
Mandelbrojt Sh. 107 203 204 206
Markus A. S. 184
Markushevich A. I. 22
Matsaev V. I. 118 209 212 214
Matsaev’s theorem 209 214
Maximum principle 37
Meiman N. N. 222 225
Mergelyan S. N. 85
Miintz Ch. H. 103
Minkin A. M. 179
Mogulskii E. Z. 212
Montel P. 221 222
Morgan G. W. 59 197
Morgan’s theorem 59
Muckenhoupt B. 179
Muckenhoupt condition 179
Muntz theorem 103
Nazarov F. L. 61 195
Nevanlinna F. 189 190
Nevanlinna F. and R. theorem 189
Nevanlinna R. 10 12 13 78 99 105 187 189 190 192 209
Nevanlinna, characteristic 12
Nevanlinna, class 116
Nevanlinna, first theorem 12
Nevanlinna, formula 187
Nevanlinna, formula for a half-disk 192
Nevanlinna, formula for functions with positive imaginary parts 100
Nevanlinna, representation of functions with positive harmonic majorants 105
Nikolskii N. K. 121 178 212
Operator interference 162
Operator preserving inequality 230
Order of an entire function 3
Ostrovskii I. V. 13 57 118 119 149 188
Ostrowski A. M. 105 204
Ostrowski function 204
P-majorant 227
Palamodov V. P. 204
Paley R. E. A. C. 69 133 146 172
Paley — Wiener, -theorem 146
Paley — Wiener, on minimality 133
Paley — Wiener, theorem 69
Pavlov B. S. 178
Phragmen E. 1 37
Phragmen — Lindelof theorem 37
Phragmen — Lindelof theorem in F. and R. Nevanlinna form 190
Phragmen — Lindelof theorem in integral form 50
Pichorides S. K. 144
Plancherel M. 50 152 161
Plancherel — Polya, equivalence norm theorem 161
Plancherel — Polya, interpolation theorem 152
Poisson formula 9
Poisson — Jensen formula 9
Polya G. 15 40 50 63 132 152 161 220
Polya’s theorem on (I)-quasianalyticity of lacunary Fourier series 15
Polya’s theorem on conjugate diagram 66
Potential logarithmic 48
Privalov I. I. 146
Product absolutely convergent 25
Radius spectral 42
Rafaelyan S. G. 166
Raikov D. A. 41 44
Rashkovskii A. Yu. 213
Redheffer R. M. 135 203
Riesz F. 48 99
Riesz F., measure 48
Riesz F., theorem 48
Riesz M. 142 169
Riesz M., base 169
Riesz M., theorem 142
Riesz — Herglotz formula 99
Ronkin L. I. 45 49 96
Rubel L. 85
Rudin W. 41 44
Russakovskii A. M. 149
Sampling theorem 150
Schaeffer A. C. 230
Schwartz L. 121 122 124
Schwarz formula 9
Seip Kr. 179
Set of finite view 109
Shannon C. S. 151
Shilov G. E. 41 44 58 199 204
Shilov’s theorem 58
Shkalikov A. A. 183 184
Sinclair A. M. 236
Sodin M. L. 165
Space, 73
Space, 150
Space, 137
Space, 145
Space, 149
Space, 150
Space, A(D) 20
Spectral synthesis 122
System minimal 131
Szego G. 40
Taylor B. A. 124
Theorem on a segment on the boundary of the indicator diagram 83 85
Theorem on addition of indicators 118
Theorem on completeness and minimality of exponentials 134
Theorem on division 80
Theorem on three circles 48
Theorem on two constant 92
Timan A. F. 227
Titchmarsh convolution theorem 119
Titchmarsh E. C. 119
Tkachenko V. A. 107 122
Tsuji M. 40
Type of function 4
Type, exponential 4
Type, maximal 4
Type, mean 4
Type, minimal 4
Type, normal 4
Ulanovskii A. M. 119
Реклама