Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kaufmann A. — Graphs, dynamic programming, and finite games
Kaufmann A. — Graphs, dynamic programming, and finite games

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Graphs, dynamic programming, and finite games

Автор: Kaufmann A.

Аннотация:

The last two decades have seen an awesome development of mathematical theories focusing on decision-making and control theory. What is so remarkable about these new theories is their unifying effects in mathematics itself. Whereas many other subdisciplines have tended to become highly specialized, generating arcane languages with a narrow, intense focus of interest, control theory and decision-making have grown wider and wider, requiring all of the resources of modern mathematics, analysis, algebra, and topology for their effective treatment. Furthermore, the requirement of obtaining numerical answers to numerical questions demands a study of numerical analysis and analog and digital computers which, in turn, brings in questions of logic and the theory of algorithms. The study of adaptive control processes forces one into contact with psychology, neurophysiology, and so on, and so on.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1967

Количество страниц: 503

Добавлена в каталог: 15.12.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Antinode      289
Arborescence      304
ARC      3 230
Arc, adjacent      231
Arc, capacity of      43 261
Arc, initial extremity      230
Arc, initially connected      231
Arc, nonsaturated      49
Arc, saturated      47
Arc, terminal extremity      230
Arc, terminally connected      231
Articulated point      52 311
Bayes's strategy      203 205
Bellman — Kalaba algorithm      257
Branch      290
Capacity of arc      43 261
Cartesian product      244
Center      53 288
Chain      9 242
Chain, composite      242
Chain, elementary      242
Chain, Eulerian      307
Chain, Hamiltonian      287
Chain, simple      242
Charge      468 470
Chromatic number      250
Circuit      8 234
Circuit, elementary      234
Circuit, Eulerian      310
Circuit, length of      8
Collar      154n
Connectivity number      315
Convex linear combination      164n
Critical operation      14
Cut      51
CYCLE      9 242
Cycle, elementary      243
Cycle, Eulerian      307
Cyclomatic number      248
Decision      378
Decision vector      129 130n
Diameter      53 291
Discrete variable      76 102n
Distance between vertices      52 288
Domination      165 468
Domination, strict      165
Domination, transitive      166
Dual      317
Dynamic programming      77 85
Equivalence class      280
Equivalence relation      239 280
Ergodic process      125
Face      316
Ford — Fulkerson algorithm      46 51 263
Ford's Algorithm      256
Forest      299
Foulkes's algorithm      20 280
Game      150
Game with complete information      223
Game, characteristic function of      466
Game, essential      468
Game, fair      162
Game, inessential      468
Game, infinite      461
Game, isomorphic      469
Game, normal form of      223
Game, rectangular      151 153
Game, symmetrical      163
Game, symmetrical extension of      445
Game, value of      154
Graph      4 6
Graph of order n      229
Graph, antisymmetrical      9 235
Graph, associated matrix of      291
Graph, center of      288
Graph, chromatic class of      250 251
Graph, chromatic number of      250
Graph, clustered      52
Graph, complement of      26
Graph, complete      10 232
Graph, connected      9 243
Graph, connected component of      243
Graph, connectivity number of      315
Graph, cyclomatic number of      248
Graph, decomposition into subgraphs      281
Graph, dual of      317
Graph, h-connected      315
Graph, incidence matrix of      298
Graph, metric      34
Graph, nonarticulated      52
Graph, nontopological      34
Graph, nucleus of      254
Graph, number of external stability of      254
Graph, number of external stability of, of internal stability of      252
Graph, p-applied      248
Graph, p-colored      116n 247
Graph, partial      10 232
Graph, planar      315
Graph, product of      244
Graph, pseudosymmetrical      310
Graph, r-chromatic      250
Graph, radius of      289
Graph, strongly connected      9 235
Graph, sum of      245
Graph, support of      270
Graph, symmetrical      9 235
Graph, topological      34
Graph, topological, planar      316
Graph, total finite      289
Hungarian algorithm      265
Imbedding      320
Incidence matrix      298
Intersection      67
Kruskal's algorithm      30 32 301
Laplace transform      351
Laplace — Bayes probability      143n 144n
Latin multiplication      271
Linear programming      94
Link      9 241
Linking      264
Linking, maximal      265
Loop      8 234
Majorant      240
Malgrange's algorithm      321
Mapping      6n 319
Mapping, inverse      237
Markovian decision chain      125 342
Matrix, Boolean      280 291 321
Matrix, boolean product of      295
Matrix, boolean rth power of      296
Matrix, boolean sum of      295
Matrix, complement of      292
Matrix, complete      321
Matrix, cover of      321
Matrix, dynamic      343
Matrix, ergodic      345
Matrix, primary      321n
Matrix, stochastic      342
Matrix, transition      342
Matrix, transposed      292
Minimal articulated set      56
minimax      190
Minorant      240
Multigraph      57 248
Network      289
Node      289
Optimality criteria, Hurwicz      190
Optimality criteria, Laplace      189
Optimality criteria, minimax      190
Optimality criteria, Savage      193
Optimality criteria, Wald      190
P-graph      57 248
Partition      239
Path      8 232
Path, composite      233
Path, critical      14
Path, elementary      233
Path, Hamiltonian      18 270
Path, length of      8 234
Path, simple      233
PERT      15 16
Point of equilibrium      154
Point on periphery      54 288
Policy      77 104n 331
Policy, optimal      77
Polygon of sustentation      201
Preorder      238
Principle of optimality      77 79 130
RADIUS      54 289
Reduction by domination      163
rose      290
Rule of angles of 120°      36 38 40
Saddle point      154 408
Scheduling      11n
Separation of vertices      53 255 287 288
sequencing      11n
Set      4
Set, articulated      312
Set, minimal articulated      56
Sheaf      39
Sollen's algorithm      32n 301
Stage      77 79n
Star      311
Strategy      104 129
Strategy, admissible pure      199
Strategy, Bayes's      203 205
Strategy, complete class of      200
Strategy, minimax      190
Strategy, mixed      157
Strategy, optimal      159
Strategy, pure      156
Strategy, weighted      157
Subgraph      10 232
Subgraph, partial      232
Subgraph, regular      244
Subpolicy      77 331
Subset, externally stable      253
Subset, internally stable      252
Substrategy      129
Symbol table for set theory      227 228
Theorem of optimality      130
Track      290
Transitive closure      235 236
Transport network      43 261
TREE      29 30 299
Tree, distributive      31
Tree, minimal      31
Tree, optimal      30
Tree, partial      300
Value of arc      256
Value of game      154
Value of partial tree      300
Vertex      3 230
Vertex, adjacent      231
Vertex, degree of      244
Vertex, external half-degree of      231
Vertex, initially connected      231
Vertex, terminally connected      231
Von Neumann's theorem      159
z-transform      347
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте