Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Ãóðñêèé Þ.À., Âàñèëüåâ À.Â. — Photoshop CS. Òðþêè è ýôôåêòû | 34 |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 46, 68, 217 |
Ïîòåìêèí Â.Ã. — MatLab 5 äëÿ ñòóäåíòîâ | 286 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 392 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 123, 128, 160 |
Bartle R.G. — The Elements of Real Analysis | 247 |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 20, 171 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 425 |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 119 |
Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 34 |
Rudin W. — Principles of Mathematical Analysis | 217, 281 |
Eisenhart L.P. — Riemannian geometry | 7, 27 |
Apostol T.M. — Calculus (vol 2) | 259 |
Keisler H.J. — Elementary calculus | 787 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 442.D, App. A, Table 3.II |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 31, 44, 115 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 31, 44, 115 |
Berger M. — A Panoramic View of Riemannian Geometry | 256 |
Hilgert J. — Analysis I - IV | 227 |
Wipf A. — Theoretische Mechanik | 41 |
Christofides N. (ed.), Mingozzi A. (ed.), Toth P. (ed.) — Combinatorial Optimization | 73 |
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 92, 147, 150—151, 192—193 |
Ames W.F. — Numerical methods for Partial Differential Equations | 41 |
Bulirsch R., Stoer J. — Introduction to numerical analysis | 273 |
Apostol T.M. — Mathematical Analysis | 348 |
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 95 |
Haerdle W., Simar L. — Applied multivariate statistical analysis | 68 |
Olver P.J. — Equivalence, Invariants and Symmetry | 222 |
Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis | 52 |
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 209 |
Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB | 412, 420 |
Felsager B. — Geometry, particles and fields | 5, 366 |
Eisenhart L.P. — An introduction to differential geometry with use of the tensor calculus | 84 |
Hyvarinen A. — Independent Component Analysis | 57 |
Meyer C.D. — Matrix analysis and applied linear algebra | 570 |
Hicks N. — Notes on differential geometry | 96 |
Roberts A.W., Varberg D.E. — Convex Functions | 101 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 28 |
Abell M.L., Braselton J.P. — Mathematica by Example | 347, 349, 497, 499 |
Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 80, 268, 330 |
Lee J.M. — Introduction to Smooth Manifolds | 71, 193 |
Webster R. — Convexity | 227 |
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 162 |
Weinstock R. — Calculus of variations with applications to physics & engineering | 12 |
Fitzgerald M. — XML Hacks | |
Goldstein H., Poole C., Safko J. — Classical mechanics | 295 |
Maeder R.E. — Computer science with mathematica | 182 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 548 |
Murnaghan F.D. — Finite deformation of an elastic solid | 64 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 159, 232, 356 |
Watkins D. — Fundamentals of matrix computations | 560 |
Taberling P. (ed.), Cardoso O. (ed.) — Turbulence: a tentative dictionary | 6, 13, 47, 56, 66, 68, 70, 71, 81—84, 87, 88, 90, 93, 97, 99, 108, 136, 140 |
Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 316 |
Powell B., Weeks R. — C# and the .NET Framework: The C++ Perspective | 2nd 3rd 4th 5th |
Green T., Chilcott J.L., Flick C.S. — Building Dynamic Websites with Macromedia Studio MX 2004 | |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 418 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 129 |
Meisel W.S. — Computer-oriented approach to pattern recognition | 47 |
Franklin P. — Fourier Methods | 139 |
Hamilton J.D. — Time Series Analysis | 735—736 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 252, 505 |
Braselton J.P. — Maple by Example | 196, 391 |
Lynch S. — Dynamical Systems with Applications Using Mathematica® | 42 |
Dyke Ph.P.G. — Managing Mathematical Projects - with Success! | 138 |
Monk P. — Finite Element Methods for Maxwell's Equations | 43 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 533 |
Brown R.F., Gorniewicz L., Jiang B. — Handbook of Topological Fixed Point Theory | 750 |
Kohonen T. — Self-organizing maps | 16 |
Edminister J.A. — Schaum's outline of electromagnetics | 62—63 |
Jang J.-S.R., Sun Ch.-T., Muzutani E. — Neuro-Fuzzy and Soft Computing | 100, 130 |
Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 151 |
Terng Ch. — Critical Point Theory and Submanifold Geometry | 182 |
Rutherford D.E. — Vector Methods | 60, 124 |
Strauss W.A. — Partial Differential Equations: An Introduction | 386 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 34, 43 |
Petersen P. — Riemannian Geometry | 22 |
Weatherburn C. — Advanced Vector Analysis | 3, 12 |
Sokolnikoff I.S. — Mathematical Theory of Elasticity | 20 |
Montiel S., Ros A. — Curves and Surfaces | 161 |
Eringen A.C. — Mechanics of continua | 523, 552 |
Shankar R. — Basic Training In Mathematics | 167 |
McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 626, 628 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 781, 786, 789, 901—902 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 59 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 59 |
Greiner W. — Classical mechanics. Point particles and relativity | 83, 100 |
Khuri A.I. — Advanced calculus with applications in statistics | 275 |
Stone C.J.D. — Course in Probability and Statistics | 640 |
Besse A.L. — Einstein Manifolds | 34, 119 |
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 282 |
Rowe N.C. — Artifical intelligence through Prolog | 213 |
Poeschel J. — Inverse Spectral Theory | 20, 127 |
Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus | 114—155 |
Goutsias J., Vincent L., Bloomberg D.S. — Mathematical morphology and its applications to image signal processing | 92 |
Shamms Mortier — 3ds max 5 for Dummies | 223 |
Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 417, 426 |
Najim K., Ikonen E., Daoud A.-K. — Stochastic processes. Estimation, optimization and analysis | 289, 301 |
Lang S.A. — Undergraduate Analysis | 380 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | 337 |
Nesterov Y. — Introductory Lectures on Convex Optimization: A Basic Course | 16 |
Antman S.S. — Nonlinear Problems of Elasticity | 380—381 |
Griffits D.J. — Introduction to quantum mechanics | 150 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 781, 786, 789, 901—902 |
Lang S. — Real Analysis | 186 |
Ito K. — Encyclopedic Dictionary of Mathematics | 442.D, App. A, Table 3.II |
Menzel D.H. — Mathematical Physics | 38 |
Kiwiel K.C. — Methods of Descent for Nondifferentiable Optimization | 5 |
Takezawa K. — Introduction to Nonparametric Regression | 383, 403 |
Hale J.K., Kocak H. — Dynamics and Bifurcations | 188, 280 |
Morita S. — Geometry of differential forms | 148 |
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 112 |
Konopinski E.J. — Electromagnetic fields and relativistic particles | 469—472 |
Lebedev L.P., Cloud M.J. — Tensor Analysis | 65 |
Haas A.E. — Introduction to theoretical physics, Vol. 1 and 2 | 33, 116 |
Powers J. — An introduction to fiber optic systems | 26 |
Morita Sh. — Geometry of Differential Forms | 148 |
Guggenheimer H.W. — Applicable Geometry | 53 |
Duffie D. — Security Markets. Stochastic Models | 5, 75, 78, 223 |
Greenberg M.D. — Advanced engineering mathematics | 767 |
Bonnans F.J., Gilbert C.J., Lemarechal C. — Numerical Optimization | 3 |
Stewart J. — Advanced general relativity | 8 |
O'Neill B. — Elementary differential geometry | 32(Ex. 8), 50(Ex. 11) |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 781, 786, 789, 901—902 |
Koerber G.G. — Properties of Solids | 12—15, see also Specific type |
Berard P.H. — Spectral Geometry | 42 |
Munk M.M. — Fundamentals Of Fluid Dynamics For Aircraft Designers | 8, 10, 51 |
Struwe M., Rappoport M. — Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems | 76 |
Strichartz R.S. — The way of analysis | 421 |
Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 346 |
Demidenko E. — Mixed Models: Theory and Applications | 80, 657, 663 |
do Carmo M.P. — Riemannian geometry | 83 (Ex.) |
Morgan F. — Riemannian geometry, a beginners guide | 103 |
Aubin J.- P., Wilson S. — Optima and Equilibria: An Introduction to Nonlinear Analysis | 62, 88 |
Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 238, 413 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 85 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 246, 319 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 237 |
Stuwe K. — Geodynamics of the Lithosphere: An Introduction | 58 |
Munkres J.R. — Analysis on manifolds | 48, 263 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 11 |
Mercier A. — Analytical and canonical formalism in physics | 24, 31, 68, 73, 89 |
Ludvigsen M. — General relativity. A geometric approach | 61, 84 |
Portela A., Charafi A. — Finite Elements Using Maple: A Symbolic Programming Approach | 49, 174, 175, 181, 185, 226, 233, 248, 262, 293 |
Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation | 3, 427 |
Murota K. — Discrete convex analysis | 80 |
Stetter H. J. — Numerical polynomial algebra | 9 |
Tarantola A. — Inverse problem theory and methods for model parameter estimation | 204 |
Kenzel W., Reents G., Clajus M. — Physics by Computer | 30, 36 |
Duda R.O., Hart P.E., Stork D.G. — Pattern Classification | 8 |
Desloge E.A. — Classical Mechanics. Volume 1 | 408 — 409, 414 — 416, 424 |
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 189, 192 |
Pipes L.A. — Applied Mathemattics for Engineers and Physicists | 342 |
Hamming R.W. — Numerical methods for scientists and engineers | 665 |
Vanderbei R.J. — Linear Programming: Foundations and Extensions | 413 |
Audin M. — Torus Actions on Symplectic Manifolds | 58 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 119 |
Ardema M.D. — Analytical Dynamics: Theory and Applications | 13 |
Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 98 |
Olver P.J., Shakiban C. — Applied linear. algebra | 338, 462, 563 |
Strelkov S.P. — Mechanics | 354 |
Faraut J., Korányi A. — Analysis on symmetric cones | 13 |
Li L.-W., Kang X.-K., Leong M.-S. — Spheroidal Wave Functions in Electromagnetic Theory | 102 |
Kreyszig E. — Advanced engineering mathematics | 403, 415, 426, A72 |
Seul M., O'Gorman L., Sammon M.J. — Practical algorithms for image analysis. Description, examples, and code | 81 |
Binmore K. — Fun and Games: A Text on Game Theory | 144 |
Neff H.P.Jr. — Introductory electromagnetics | 16—20, 51 |
Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 28, 91 |
Houston W.V. — Principles of Mathematical Physics | 84 |
Rosenfeld B. — Geometry of Lie Groups | 14 |
Bertsekas D.P. — Constrained Optimization and Lagrange Multiplier Methods | 9 |
Bow S.-T. — Pattern recognition and image preprocessing | 304 |
Weyl H. — Space, Time, Matter | 59 |
Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)571, 572 |
Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 659—661, 679—681 |
Trefethen L.N., Bau D. — Numerical Linear Algebra | 203, 302 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 383 |
Buser P. — Geometry and spectra of compact riemann surfaces | 185, 363 |
Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics | 373 |
Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 150 |
Bayin S.S. — Mathematical Methods in Science and Engineering | 193 |
Arya A.P. — Introduction to Classical Mechanics | 164 |
Bell E.T. — The Development of Mathematics | 496 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 23 |
Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions | 72, 307 |
Bazaraa M.S., Sherali H.D., Shetty C.M. — Nonlinear Programming: Theory and Algorithms | 40, 763 |
Friedlander F.G. — The Wave Equation on a Curved Space-Time | 7 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 570 |
Graham J., Baldock R. — Image processing and analysis. A practical approach | see "Image gradient" |
Vogel C.R. — Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) | 22 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 256 |
Sokolnikoff I.S. — Mathematical Theory of Elasticity | 20 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 39, 40, 65 |
Johnson C. — Numerical solution of partial differential equations by the finite element method | 27, 124 |
Browder A. — Mathematical Analysis: An Introduction | 288 |
Rutherford D.E. — Vector methods. Applied to differential geometry, mechanics, and potential theory | 60, 124 |
Sutton O.G. — Mathematics in action | 42, 48, 50 |
Morita S. — Geometry of Differential Forms | 148 |
Goffman C. — Calculus of several variables | 167 |
Denn M. — Optimization by variational methods | 54, 59, 66 (see also Steep descent) |
Rall L.B. — Automatic Differentiation: Techniques and Applications | 91 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 8, 12, 188 |
Schwartz M. — Principles of electrodynamics | 13, 64, 69 |
Hermann R. — Differential geometry and the calculus of variations | 3, 277, 336, 386 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 612 |
Rice J.R. — Linear Theory. Volume 1. The approximation of functions | 159 |
Bazaraa M.S., Jarvis J.J. — Linear Programming and Network Flows | 25 |
Yoo T.S. (ed.) — Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis | 30, 194, 225 |
Franklin G.F., Workman M.L., Powell J.D. — Digital Control of Dynamic Systems | 118 |
Atkins P. — Molecular Quantum Mechanics | 518 |
Myler H.R., Weeks A.R. — Computer imaging recipes in C | 87, 103 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 22 |
Davis H. F., Snider A. D. — Introduction to Vector Analysis | 80 |
Poznyak A.S., Najim K., Gomez-Ramirez E. — Self-learning control of finite Markov chains | 87, 89, 156, 168, 173, 183 |
Sverdrup H.U., Johnson M.W., Fleming R.H. — The Oceans: their physics, chemistry, and general biology | 156 |
Morse P.M. — Methods of theoretical physics | 31, 44, 115 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 6.2. 79 |
Carroll R.W. — Mathematical physics | 287 |
Lang S. — Undergraduate analysis | 380 |
Richards P.I. — Manual of Mathematical Physics | 295 |
Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 10 |
Weinreich G. — Geometrical vectors | 3, 55—57 |
Lane S.M. — Mathematics, form and function | 170, 249 |
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 17 |
Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 23 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 518 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 88, 142 |
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 39, 46 |
Aubin J., Frankowska H. — Set-Valued Analysis | 94 |
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 108 |
Hildebrand F.B. — Advanced Calculus for Applications | 275 |
Griffits D.J. — Introductions to electrodynamics | 13, 14, 548 |
Strang G. — Introduction to Applied Mathematics | 183, 185, 205, 214 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 129 |
Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms | 10, 136, 137 |
Schutz B.F. — A first course in general relativity | 66, 70 |
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 15 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 124 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 158, 161, 162, 172 |
Lang S. — Linear Algebra | 164 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 259 |
Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 108—109, 110, 111, 114 |
Zeidler E. — Oxford User's Guide to Mathematics | 359, 364 |
Schott J.R. — Matrix Analysis for Statistics | 237 |
Edward M. Purcell — Electricity and magnetism | 46 |
Lemm J.C. — Bayesian field theory | 36, 45, 87, 88, 90, 91, 93, 95, 99, 111, 119, 182, 191, 261, 268, 336, 348, 350, 358 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 232 |
Collatz L. — Functional analysis and numerical mathematics | 275 |
Hamilton J.D. — Time Series Analysis | 735—736 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 355—361, 445 |
Biliotti M., Jha V., Johnson N. — Foundations of translation planes | 513 |
Lee A. — Mathematics Applied to Continuum Mechanics | 62 |
Franklin P. — Differential and integral calculus | 536 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 115 |
Hopf L., Nef W. — Introduction To The Differential Equations Of Physics | 41 |
Courant R. — Differential and Integral Calculus, Vol. 1 | 90 |
Abhyankar S.S. — Lectures on Algebra Volume 1 | 64 |
Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 61 |
Burden R.L., Faires J.D. — Numerical analysis | 569 |
Woods F.S. — Advanced Calculus | 77, 210 |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 150 |
Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 164 |
Bäck T. — Evolutionary Algorithms in Theory and Practice | 44n |
Ascher U., Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 18, 32 |
Necas J., Hlavacek I. — Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction | 111 |
Shirley P., Ashikhmin M, Gleicher M. — Fundamentals of computer graphics | 31 |
Schutz B. — Geometrical Methods in Mathematical Physics | 53
Gradient, not naturally a vector |
Canuto C., Tabacco A. — Mathematical analysis | 286 |
Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 17, 29 |
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 119 |
Zorich V.A., Cooke R. — Mathematical analysis II | 203, 260, 274, 282 |
Cheney W. — Analysis for Applied Mathematics | 117 |
Zorich V. — Mathematical Analysis | 203, 260, 274, 282 |
Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)571, 572 |
Griewank A. — Evaluating derivatives: principles and techniques of algorithmic differentiation | see "Adjoint" |
Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 36 |
Mac Lane S. — Mathematics: Form and Function | 170, 249 |
BertsekasD., Tsitsiklis J. — Neuro-Dynamic Programming (Optimization and Neural Computation Series, 3) | 464 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 392 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè - Maple, Matlab, LaTex | 392 |
Halpern A., Erlbach E. — Beginning Physics II: Waves, Electromagnetism, Optics and Modern Physics | 113 |
Apostol T. — Mathematical Analysis, Second Edition | 348 |
Renegar J. — A mathematical view of interior-point methods in convex optimization | 6 |
Rosenberg S. — The Laplacian on a Riemannian manifold | 17 |
Edwards D.A., Syphers M.J. — An introduction to the physics of high energy accelerators | 61, 66 |
Kline M. — Mathematical thought from ancient to modern times | 781, 786, 789, 901, 902 |
Dennery P., Krzywicki A. — Mathematics for Physicists | 17, see also "Vector analysis" |
Leader S. — The Kurzweil-Henstock integral and its differentials | 187 |
Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 539, see also "Nonlinearity, gradient" |
Daniels R.W. — Introduction to numerical methods and optimization techniques | 208—211 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 148 |
Truss J.K. — Foundations of Mathematical Analysis | 69 |
Truss J. — Foundations of mathematical analysis | 69 |
J. K. Truss — Foundations of mathematical analysis MCet | 69 |