Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Gradient



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Weintraub S. — Differential Forms. A complement to vector calculus
Ãóðñêèé Þ.À., Âàñèëüåâ À.Â. — Photoshop CS. Òðþêè è ýôôåêòû34
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary46, 68, 217
Ïîòåìêèí Â.Ã. — MatLab 5 äëÿ ñòóäåíòîâ286
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè392
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1)123, 128, 160
Bartle R.G. — The Elements of Real Analysis247
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics20, 171
Hunter J.K., Nachtergaele B. — Applied Analysis425
Spiegel M.R. — Mathematical Handbook of Formulas and Tables119
Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators34
Rudin W. — Principles of Mathematical Analysis217, 281
Eisenhart L.P. — Riemannian geometry7, 27
Apostol T.M. — Calculus (vol 2)259
Keisler H.J. — Elementary calculus787
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2442.D, App. A, Table 3.II
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1)31, 44, 115
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2)31, 44, 115
Berger M. — A Panoramic View of Riemannian Geometry256
Hilgert J. — Analysis I - IV227
Wipf A. — Theoretische Mechanik41
Christofides N. (ed.), Mingozzi A. (ed.), Toth P. (ed.) — Combinatorial Optimization73
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications92, 147, 150—151, 192—193
Ames W.F. — Numerical methods for Partial Differential Equations41
Bulirsch R., Stoer J. — Introduction to numerical analysis273
Apostol T.M. — Mathematical Analysis348
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers95
Haerdle W., Simar L. — Applied multivariate statistical analysis68
Olver P.J. — Equivalence, Invariants and Symmetry222
Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis52
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach209
Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB412, 420
Felsager B. — Geometry, particles and fields5, 366
Eisenhart L.P. — An introduction to differential geometry with use of the tensor calculus84
Hyvarinen A. — Independent Component Analysis57
Meyer C.D. — Matrix analysis and applied linear algebra570
Hicks N. — Notes on differential geometry96
Roberts A.W., Varberg D.E. — Convex Functions101
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature28
Abell M.L., Braselton J.P. — Mathematica by Example347, 349, 497, 499
Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL80, 268, 330
Lee J.M. — Introduction to Smooth Manifolds71, 193
Webster R. — Convexity227
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations162
Weinstock R. — Calculus of variations with applications to physics & engineering12
Fitzgerald M. — XML Hacks
Goldstein H., Poole C., Safko J. — Classical mechanics295
Maeder R.E. — Computer science with mathematica182
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics548
Murnaghan F.D. — Finite deformation of an elastic solid64
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions159, 232, 356
Watkins D. — Fundamentals of matrix computations560
Taberling P. (ed.), Cardoso O. (ed.) — Turbulence: a tentative dictionary6, 13, 47, 56, 66, 68, 70, 71, 81—84, 87, 88, 90, 93, 97, 99, 108, 136, 140
Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology316
Powell B., Weeks R. — C# and the .NET Framework: The C++ Perspective2nd 3rd 4th 5th
Green T., Chilcott J.L., Flick C.S. — Building Dynamic Websites with Macromedia Studio MX 2004
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications418
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis129
Meisel W.S. — Computer-oriented approach to pattern recognition47
Franklin P. — Fourier Methods139
Hamilton J.D. — Time Series Analysis735—736
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry252, 505
Braselton J.P. — Maple by Example196, 391
Lynch S. — Dynamical Systems with Applications Using Mathematica®42
Dyke Ph.P.G. — Managing Mathematical Projects - with Success!138
Monk P. — Finite Element Methods for Maxwell's Equations43
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable533
Brown R.F., Gorniewicz L., Jiang B. — Handbook of Topological Fixed Point Theory750
Kohonen T. — Self-organizing maps16
Edminister J.A. — Schaum's outline of electromagnetics62—63
Jang J.-S.R., Sun Ch.-T., Muzutani E. — Neuro-Fuzzy and Soft Computing100, 130
Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory151
Terng Ch. — Critical Point Theory and Submanifold Geometry182
Rutherford D.E. — Vector Methods60, 124
Strauss W.A. — Partial Differential Equations: An Introduction386
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications34, 43
Petersen P. — Riemannian Geometry22
Weatherburn C. — Advanced Vector Analysis3, 12
Sokolnikoff I.S. — Mathematical Theory of Elasticity20
Montiel S., Ros A. — Curves and Surfaces161
Eringen A.C. — Mechanics of continua523, 552
Shankar R. — Basic Training In Mathematics167
McMano D., Topa D.M. — A Beginner's Guide to Mathematica626, 628
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1781, 786, 789, 901—902
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration59
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 159
Greiner W. — Classical mechanics. Point particles and relativity83, 100
Khuri A.I. — Advanced calculus with applications in statistics275
Stone C.J.D. — Course in Probability and Statistics640
Besse A.L. — Einstein Manifolds34, 119
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers282
Rowe N.C. — Artifical intelligence through Prolog213
Poeschel J. — Inverse Spectral Theory20, 127
Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus114—155
Goutsias J., Vincent L., Bloomberg D.S. — Mathematical morphology and its applications to image signal processing92
Shamms Mortier — 3ds max 5 for Dummies223
Ayres F.J., Mendelson E. — Schaum's Outline of Calculus417, 426
Najim K., Ikonen E., Daoud A.-K. — Stochastic processes. Estimation, optimization and analysis289, 301
Lang S.A. — Undergraduate Analysis380
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2337
Nesterov Y. — Introductory Lectures on Convex Optimization: A Basic Course16
Antman S.S. — Nonlinear Problems of Elasticity380—381
Griffits D.J. — Introduction to quantum mechanics150
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3781, 786, 789, 901—902
Lang S. — Real Analysis186
Ito K. — Encyclopedic Dictionary of Mathematics442.D, App. A, Table 3.II
Menzel D.H. — Mathematical Physics38
Kiwiel K.C. — Methods of Descent for Nondifferentiable Optimization5
Takezawa K. — Introduction to Nonparametric Regression383, 403
Hale J.K., Kocak H. — Dynamics and Bifurcations188, 280
Morita S. — Geometry of differential forms148
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry112
Konopinski E.J. — Electromagnetic fields and relativistic particles469—472
Lebedev L.P., Cloud M.J. — Tensor Analysis65
Haas A.E. — Introduction to theoretical physics, Vol. 1 and 233, 116
Powers J. — An introduction to fiber optic systems26
Morita Sh. — Geometry of Differential Forms148
Guggenheimer H.W. — Applicable Geometry53
Duffie D. — Security Markets. Stochastic Models5, 75, 78, 223
Greenberg M.D. — Advanced engineering mathematics767
Bonnans F.J., Gilbert C.J., Lemarechal C. — Numerical Optimization3
Stewart J. — Advanced general relativity8
O'Neill B. — Elementary differential geometry32(Ex. 8), 50(Ex. 11)
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2781, 786, 789, 901—902
Koerber G.G. — Properties of Solids12—15, see also Specific type
Berard P.H. — Spectral Geometry42
Munk M.M. — Fundamentals Of Fluid Dynamics For Aircraft Designers8, 10, 51
Struwe M., Rappoport M. — Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems76
Strichartz R.S. — The way of analysis421
Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation346
Demidenko E. — Mixed Models: Theory and Applications80, 657, 663
do Carmo M.P. — Riemannian geometry83 (Ex.)
Morgan F. — Riemannian geometry, a beginners guide103
Aubin J.- P., Wilson S. — Optima and Equilibria: An Introduction to Nonlinear Analysis62, 88
Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach238, 413
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity85
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds246, 319
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1)237
Stuwe K. — Geodynamics of the Lithosphere: An Introduction58
Munkres J.R. — Analysis on manifolds48, 263
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism11
Mercier A. — Analytical and canonical formalism in physics24, 31, 68, 73, 89
Ludvigsen M. — General relativity. A geometric approach61, 84
Portela A., Charafi A. — Finite Elements Using Maple: A Symbolic Programming Approach49, 174, 175, 181, 185, 226, 233, 248, 262, 293
Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation3, 427
Murota K. — Discrete convex analysis80
Stetter H. J. — Numerical polynomial algebra9
Tarantola A. — Inverse problem theory and methods for model parameter estimation204
Kenzel W., Reents G., Clajus M. — Physics by Computer30, 36
Duda R.O., Hart P.E., Stork D.G. — Pattern Classification8
Desloge E.A. — Classical Mechanics. Volume 1408 — 409, 414 — 416, 424
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design189, 192
Pipes L.A. — Applied Mathemattics for Engineers and Physicists342
Hamming R.W. — Numerical methods for scientists and engineers665
Vanderbei R.J. — Linear Programming: Foundations and Extensions413
Audin M. — Torus Actions on Symplectic Manifolds58
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables119
Ardema M.D. — Analytical Dynamics: Theory and Applications13
Kompaneyets A.S., Yankovsky G. — Theoretical Physics98
Olver P.J., Shakiban C. — Applied linear. algebra338, 462, 563
Strelkov S.P. — Mechanics354
Faraut J., Korányi A. — Analysis on symmetric cones13
Li L.-W., Kang X.-K., Leong M.-S. — Spheroidal Wave Functions in Electromagnetic Theory102
Kreyszig E. — Advanced engineering mathematics403, 415, 426, A72
Seul M., O'Gorman L., Sammon M.J. — Practical algorithms for image analysis. Description, examples, and code81
Binmore K. — Fun and Games: A Text on Game Theory144
Neff H.P.Jr. — Introductory electromagnetics16—20, 51
Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology28, 91
Houston W.V. — Principles of Mathematical Physics84
Rosenfeld B. — Geometry of Lie Groups14
Bertsekas D.P. — Constrained Optimization and Lagrange Multiplier Methods9
Bow S.-T. — Pattern recognition and image preprocessing304
Weyl H. — Space, Time, Matter59
Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics)(1)571, 572
Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics659—661, 679—681
Trefethen L.N., Bau D. — Numerical Linear Algebra203, 302
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142)383
Buser P. — Geometry and spectra of compact riemann surfaces185, 363
Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics373
Margenau H., Murphy G.M. — The mathematics of physics and chemistry150
Bayin S.S. — Mathematical Methods in Science and Engineering193
Arya A.P. — Introduction to Classical Mechanics164
Bell E.T. — The Development of Mathematics496
Carmeli M. — Classical Fields: General Gravity and Gauge Theory23
Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions72, 307
Bazaraa M.S., Sherali H.D., Shetty C.M. — Nonlinear Programming: Theory and Algorithms40, 763
Friedlander F.G. — The Wave Equation on a Curved Space-Time7
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual570
Graham J., Baldock R. — Image processing and analysis. A practical approachsee "Image gradient"
Vogel C.R. — Computational Methods for Inverse Problems (Frontiers in Applied Mathematics)22
Bridges D.S. — Foundations Of Real And Abstract Analysis256
Sokolnikoff I.S. — Mathematical Theory of Elasticity20
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity39, 40, 65
Johnson C. — Numerical solution of partial differential equations by the finite element method27, 124
Browder A. — Mathematical Analysis: An Introduction288
Rutherford D.E. — Vector methods. Applied to differential geometry, mechanics, and potential theory60, 124
Sutton O.G. — Mathematics in action42, 48, 50
Morita S. — Geometry of Differential Forms148
Goffman C. — Calculus of several variables167
Denn M. — Optimization by variational methods54, 59, 66 (see also Steep descent)
Rall L.B. — Automatic Differentiation: Techniques and Applications91
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology8, 12, 188
Schwartz M. — Principles of electrodynamics13, 64, 69
Hermann R. — Differential geometry and the calculus of variations3, 277, 336, 386
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB612
Rice J.R. — Linear Theory. Volume 1. The approximation of functions159
Bazaraa M.S., Jarvis J.J. — Linear Programming and Network Flows25
Yoo T.S. (ed.) — Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis30, 194, 225
Franklin G.F., Workman M.L., Powell J.D. — Digital Control of Dynamic Systems118
Atkins P. — Molecular Quantum Mechanics518
Myler H.R., Weeks A.R. — Computer imaging recipes in C87, 103
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories22
Davis H. F., Snider A. D. — Introduction to Vector Analysis80
Poznyak A.S., Najim K., Gomez-Ramirez E. — Self-learning control of finite Markov chains87, 89, 156, 168, 173, 183
Sverdrup H.U., Johnson M.W., Fleming R.H. — The Oceans: their physics, chemistry, and general biology156
Morse P.M. — Methods of theoretical physics31, 44, 115
Gelbaum B.R. — Problems in Real and Complex Analysis6.2. 79
Carroll R.W. — Mathematical physics287
Lang S. — Undergraduate analysis380
Richards P.I. — Manual of Mathematical Physics295
Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism10
Weinreich G. — Geometrical vectors3, 55—57
Lane S.M. — Mathematics, form and function170, 249
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra17
Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems23
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics518
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology,88, 142
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos39, 46
Aubin J., Frankowska H. — Set-Valued Analysis94
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics108
Hildebrand F.B. — Advanced Calculus for Applications275
Griffits D.J. — Introductions to electrodynamics13, 14, 548
Strang G. — Introduction to Applied Mathematics183, 185, 205, 214
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis129
Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms10, 136, 137
Schutz B.F. — A first course in general relativity66, 70
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry15
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering124
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus158, 161, 162, 172
Lang S. — Linear Algebra164
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications259
Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics108—109, 110, 111, 114
Zeidler E. — Oxford User's Guide to Mathematics359, 364
Schott J.R. — Matrix Analysis for Statistics237
Edward M. Purcell — Electricity and magnetism46
Lemm J.C. — Bayesian field theory36, 45, 87, 88, 90, 91, 93, 95, 99, 111, 119, 182, 191, 261, 268, 336, 348, 350, 358
Pier J.-P. — Mathematical Analysis during the 20th Century232
Collatz L. — Functional analysis and numerical mathematics275
Hamilton J.D. — Time Series Analysis735—736
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields355—361, 445
Biliotti M., Jha V., Johnson N. — Foundations of translation planes513
Lee A. — Mathematics Applied to Continuum Mechanics62
Franklin P. — Differential and integral calculus536
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1115
Hopf L., Nef W. — Introduction To The Differential Equations Of Physics41
Courant R. — Differential and Integral Calculus, Vol. 190
Abhyankar S.S. — Lectures on Algebra Volume 164
Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists61
Burden R.L., Faires J.D. — Numerical analysis569
Woods F.S. — Advanced Calculus77, 210
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory150
Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics)164
Bäck T. — Evolutionary Algorithms in Theory and Practice44n
Ascher U., Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations18, 32
Necas J., Hlavacek I. — Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction111
Shirley P., Ashikhmin M, Gleicher M. — Fundamentals of computer graphics31
Schutz B. — Geometrical Methods in Mathematical Physics53 Gradient, not naturally a vector
Canuto C., Tabacco A. — Mathematical analysis286
Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations17, 29
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics)119
Zorich V.A., Cooke R. — Mathematical analysis II203, 260, 274, 282
Cheney W. — Analysis for Applied Mathematics117
Zorich V. — Mathematical Analysis203, 260, 274, 282
Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory(1)571, 572
Griewank A. — Evaluating derivatives: principles and techniques of algorithmic differentiationsee "Adjoint"
Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts)36
Mac Lane S. — Mathematics: Form and Function170, 249
BertsekasD., Tsitsiklis J. — Neuro-Dynamic Programming (Optimization and Neural Computation Series, 3)464
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè392
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè - Maple, Matlab, LaTex392
Halpern A., Erlbach E. — Beginning Physics II: Waves, Electromagnetism, Optics and Modern Physics113
Apostol T. — Mathematical Analysis, Second Edition348
Renegar J. — A mathematical view of interior-point methods in convex optimization6
Rosenberg S. — The Laplacian on a Riemannian manifold17
Edwards D.A., Syphers M.J. — An introduction to the physics of high energy accelerators61, 66
Kline M. — Mathematical thought from ancient to modern times781, 786, 789, 901, 902
Dennery P., Krzywicki A. — Mathematics for Physicists17, see also "Vector analysis"
Leader S. — The Kurzweil-Henstock integral and its differentials187
Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations539, see also "Nonlinearity, gradient"
Daniels R.W. — Introduction to numerical methods and optimization techniques208—211
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201)148
Truss J.K. — Foundations of Mathematical Analysis69
Truss J. — Foundations of mathematical analysis69
J. K. Truss — Foundations of mathematical analysis MCet69
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå