Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Schott J.R. — Matrix Analysis for Statistics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Matrix Analysis for Statistics
Àâòîð: Schott J.R.
Àííîòàöèÿ: A complete, self-contained introduction to matrix analysis theory and practice
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. As such, they have become a vital part of any statistical education. Unfortunately, matrix methods are usually treated piecemeal in courses on everything from regression analysis to stochastic processes. Matrix Analysis for Statistics offers a unique view of matrix analysis theory and methods as a whole.
Professor James R. Schott provides in-depth, step-by-step coverage of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors, the Moore-Penrose inverse, matrix differentiation, the distribution of quadratic forms, and more. The subject matter is presented in a theorem/proof format, and every effort has been made to ease the transition from one topic to another. Proofs are easy to follow, and the author carefully justifies every step. Accessible even for readers with a cursory background in statistics, the text uses examples that are familiar and easy to understand. Other key features that make this the ideal introduction to matrix analysis theory and practice include:
- Self-contained chapters for flexibility in topic choice.
- Extensive examples and chapter-end practice exercises.
- Optional sections for mathematically advanced readers.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 431
Äîáàâëåíà â êàòàëîã: 21.10.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Accumulation point 70
Adjoint 8
Analysis of variance 120 see "Two-way
Bartlett adjustment 406
Basis 41—43
Basis, orthonormal 48—52
Bilinear form 15
Block diagonal matrix 12
Boundary point 72
canonical variate analysis 107 154—155 406—407
Cauchy — Schwarz inequality 35
Cayley — Hamilton theorem 93
Chain rule 324 327
Characteristic equation 85
Characteristic root 84 see
Characteristic vector 84 see
Chi-squared distribution and Moore — Penrose inverse 179—180
Chi-squared distribution and quadratic forms 378—384
Chi-squared distribution, central 20—21
Chi-squared distribution, noncentra] 21
Cholesky decomposition 139
Circulant matrix 300—304
Closure 70
Cochran's theorem 374—378
Cofactor 5 8
Cofactor, expansion formula for determinant 5—6
Column space 43
Commutation matrix 276—283
Commutation matrix, eigenvalues 281
Commutation matrix, eigenvectors 317
Complex matrix 16—18
Concave function see "Convex function"
Consistent equations 210—213
Consistent estimator 189—190
Continuity of determinant 188
Continuity of eigenvalues 103
Continuity of inverse matrix 188
Continuity of Moore — Penrose inverse 189
Convex combination 70
Convex function 349—353
Convex function, absolute maximum 352
Convex hull 70
Convex set 70—74
Correlation coefficient 24
Correlation coefficient, maximum squared 368
Correlation matrix 24
Correlation matrix, nonnegative definite 24
Correlation matrix, sample 25
Courant — Fischer min-max theorem 108—110
Covariance 22—23
Covariance matrix 23
Covariance matrix, nonnegative definite 23
Covariance matrix, sample 25
Covariance of quadratic forms 391 394
Decomposition, Cholesky 139
Decomposition, Jordan 147—149
Decomposition, LU 169
Decomposition, QR 140
Decomposition, Schur 149—153
Decomposition, singular value 131—138
Decomposition, spectral 95 98 138
Density function 19
Derivative 323 325
derivative of determinant 332 336
Derivative of eigenvalue 343
derivative of eigenvector 343
Derivative of inverse 333 336—337
Derivative of Moore — Penrose inverse 333—334 336—337
Derivative of patterned matrices 335—337
Derivative of trace 332
Derivative of vector function 327
Derivative, partial 325
Derivative, second-order partial 326
Determinant 5—8
Determinant and eigenvalues 90
Determinant of partitioned matrix 249—250
Determinant, continuity of 188
Determinant, derivative of 332 336
Determinant, expansion formula for 5—6
Diagonal matrix 2
Diagonalization 92 144—147
Diagonalization, simultaneous 118 154—157
Differential 324 325
Differential of determinant 332
Differential of eigenvalue 343
Differential of eigenvector 343
Differential of inverse 333 336—337
Differential of matrix function 328
Differential of Moore — Penrose inverse 334—335 336—337
Differential of trace 332
Differential of vector function 327
Differential, second 326
Dimension of vector space 41
Direct sum of matrices 260—261
Discriminant analysis 37
Distance function 36
Distance function, euclidean 36 50 62—63 141
Distance function, Mahalanobis 37 63 141
Distance in the metric of 37
Duplication matrix 238—285
Eigenprojection 98
Eigenprojection, continuity of 103
Eigenspace 87 146
Eigenvalue 84
Eigenvalue and rank 92 99 146—147 153
Eigenvalue in the metric of 118
Eigenvalue of idempotent matrix 370—371
Eigenvalue of orthogonal matrix 88
Eigenvalue of positive definite matrix 112
Eigenvalue of positive semidefinite matrix 112
Eigenvalue of symmetric matrix 93—102
Eigenvalue of transpose product 114—115
Eigenvalue of triangular matrix 88
Eigenvalue, asymptotic distribution of 404—406
Eigenvalue, continuity of 103
Eigenvalue, derivative of 343
Eigenvalue, distinct 86
Eigenvalue, extremal properties 104—110
Eigenvalue, monotonicity 115
Eigenvalue, multiple 86
Eigenvalue, perturbation of 339—343
Eigenvalue, simple 86
Eigenvectors 84
Eigenvectors of symmetric matrix 94—96
Eigenvectors, asymptotic distribution of 404—406
Eigenvectors, common 128 157
Eigenvectors, derivative of 343
Eigenvectors, linear independence of 91
Elementary transformations 13
Elimination matrices 285—288
Estimable function 230
Euclidean norm 36 37 158
Euclidean space 36
Euler's formula 17
Expected value 19
Expected value of quadratic form 390—398
F distribution 21—22
Fourier matrix 303—304
Gauss — Seidel method 236
Generalized inverse 190—196 see
Generalized inverse, computation of 200—203
Generalized inverse, properties 193
Gradient 237
Gram — Schmidt orthonormalization 48 54—55
Hadamard inequality 270
Hadamard matrix 305—307
Hadamard matrix, normalized 306
Hadamard product 266—276
Hadamard product as a Kronecker product 267
Hadamard product, eigenvalues of 274—276
Hadamard product, rank of 267
Hermite form 200
Hermitian matrix 18
Hessian matrix 326
Homogeneous system of equations 219—221
Hyperplane 71
Idempotent matrix 3 58—59 370—374
Idempotent matrix, eigenvalues of 370—371
Idempotent matrix, rank of 370—371
Idempotent matrix, symmetric 372 373—374
Idempotent matrix, trace of 370—371
Identity matrix 2
Indefinite matrix 16
Independence (linear) 38—40
Independence (stochastic) of quadratic forms 384—390
Independence (stochastic) of random variables 22
Inner product 34—35
Inner product, Euclidean 35
Interior point 72
Intersection of vector spaces 67
Inverse matrix 8—11
Inverse matrix and cofactors 8—9
Inverse matrix of a sum 9—10
Inverse matrix of partitioned matrix 347
Inverse matrix, continuity of 188
Inverse matrix, derivative of 333 336—337
Irreducible matrix 294—295
Jacobi method 236
Jacobian matrix 327
Jensen's inequality 352—353
Jordan decomposition 147—149
Kronecker product 253
Kronecker product, determinant of 256
Kronecker product, eigenvalues of 255
Kronecker product, eigenvectors of 312
Kronecker product, inverse of 255
Kronecker product, Moore — Penrose inverse of 255
Kronecker product, rank of 257
Kronecker product, trace of 255
Lagrange function 354
Lagrange multipliers 354
Lanczos vectors 238
latent root 84 see
Latent vector 84 see
Least squares see also "Regression"
Least squares and best linear unbiased estimator 113—114
Least squares and multicollinearity 96—98 136
Least squares and solutions to a system of equations 222—228 345—346
Least squares in less than full rank models 58 228—232
Least squares in multiple regression 55—58
Least squares in one-way classification model 79—80
Least squares in ridge regression 123
Least squares in simple linear regression 50—51
Least squares inverse 196—197
Least squares inverse, computation of 203—204
Least squares with standardized explanatory variables 64—65
Least squares, generalized 141—142 245
Least squares, ordinary 26—28
Least squares, restricted 80—81 245
Least squares, weighted 65—66
Limit point 70
linear combination 33
Linear dependence 38—40
Linear equations 66—67
Linear equations and singular value decomposition 233—235
Linear equations, consistency of 210—213
Linear equations, homogeneous system of 219—221
Linear equations, least squares solutions of 222—228
Linear equations, linearly independent solutions to 217
Linear equations, solutions to 213—219
Linear equations, sparce systems of 235—241
Linear equations, sparce systems of, direct methods 235—236
Linear equations, sparce systems of, iterative methods 236—241
Linear equations, unique solution to 216
Linear independence 38—40
Linear model 27
Linear space 33
Linear transformation 60—67
LU factorization 169
Mahalanobis distance 37 63 141
Markov chain 298—300
Matrix function 327
Matrix norm 158
Matrix norm, Euclidean 158
Matrix norm, maximum column sum 158
Matrix norm, maximum row sum 158
Matrix norm, spectral 158
Matrix, block diagonal 12
Matrix, circulant 300—304
Matrix, commutation 276—283
Matrix, complex 16—18
Matrix, correlation 24
Matrix, covariance 23
Matrix, diagonal 2
Matrix, duplication 283—285
Matrix, eigenprojection 98
Matrix, elimination 285—288
Matrix, Fourier 303—304
Matrix, Hadamard 305—307
Matrix, hermitian 18
Matrix, Hessian 326
Matrix, idempotent 3 58—59 370—374
Matrix, identity 2
Matrix, indefinite 16
Matrix, irreducible 294—295
Matrix, Jacobian 327
Matrix, negative definite 16
Matrix, negative semidefinite 16
Matrix, nilpotent 127 166
Matrix, nonnegative 288
Matrix, nonnegative definite 16
Matrix, nonsingular 8
Matrix, null 2
Matrix, order of 1
Matrix, orthogonal 14—15
Matrix, partitioned 11—13
Matrix, permutation 15
Matrix, positive 288
Matrix, positive definite 15—16
Matrix, positive semidefinite 15—16
Matrix, primitive 298
Matrix, projection 52—59
Matrix, reducible 294—295
Matrix, similar 144
Matrix, skew-symmetric 4
Matrix, square root 16
Matrix, symmetric 4
Matrix, Toeplitz 304—305
Matrix, transpose 3
Matrix, triangular 2
Matrix, unitary 18 150
Matrix, Vandermonde 307—309
Maximum Likelihood Estimation 347—349
Maximum of a concave function 351
Maximum with equality constraints 353—360
Maximum, absolute 344
Maximum, conditions for local maximum 345
Maximum, local 344
Mean 19
Mean squared error 163—164
Mean vector 22
Mean vector, differences in 106—107 116—117 154
Mean vector, sample 25
Mean, sample 25
Minimum see "Maximum"
Minor 5 13
Minor, leading principal 311
Modulus of a complex number 17
Moment generating function 20
Moments 19—20
Ðåêëàìà