Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Schott J.R. — Matrix Analysis for Statistics
Schott J.R. — Matrix Analysis for Statistics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Matrix Analysis for Statistics

Àâòîð: Schott J.R.

Àííîòàöèÿ:

A complete, self-contained introduction to matrix analysis theory and practice
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. As such, they have become a vital part of any statistical education. Unfortunately, matrix methods are usually treated piecemeal in courses on everything from regression analysis to stochastic processes. Matrix Analysis for Statistics offers a unique view of matrix analysis theory and methods as a whole.
Professor James R. Schott provides in-depth, step-by-step coverage of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors, the Moore-Penrose inverse, matrix differentiation, the distribution of quadratic forms, and more. The subject matter is presented in a theorem/proof format, and every effort has been made to ease the transition from one topic to another. Proofs are easy to follow, and the author carefully justifies every step. Accessible even for readers with a cursory background in statistics, the text uses examples that are familiar and easy to understand. Other key features that make this the ideal introduction to matrix analysis theory and practice include:
- Self-contained chapters for flexibility in topic choice.
- Extensive examples and chapter-end practice exercises.
- Optional sections for mathematically advanced readers.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 431

Äîáàâëåíà â êàòàëîã: 21.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Moore — Penrose inverse      171
Moore — Penrose inverse and projection matrices      172—173
Moore — Penrose inverse and quadratic form in normal random vectors      179—180
Moore — Penrose inverse and rank      175
Moore — Penrose inverse and singular value decomposition      172
Moore — Penrose inverse and spectral decomposition      176—177
Moore — Penrose inverse of a matrix product      180—185
Moore — Penrose inverse of a sum      186—187
Moore — Penrose inverse of a symmetric matrix      176—178
Moore — Penrose inverse of block diagonal matrix      186
Moore — Penrose inverse of diagonal matrix      177
Moore — Penrose inverse of partitioned matrices      185—186
Moore — Penrose inverse, computation of      175 197—199
Moore — Penrose inverse, continuity of      188—190
Moore — Penrose inverse, derivative of      333—334 336—337
Moore — Penrose inverse, existence of      171—172
Moore — Penrose inverse, properties      174—180
Moore — Penrose inverse, uniqueness of      171—172
Multicollinearity      96—98 136
Multinomial distribution      368
Multiplicity of an eigenvalue      86
Multivariate normal distribution      25—26 331—332 347—349
Negative definite matrix      16
Negative semidefinite matrix      16
Nilpotent matrix      127
Nonnegative definite matrix      16
Nonnegative definite matrix, correlation matrix      24
Nonnegative definite matrix, covariance matrix      23
Nonnegative matrix      288
Nonnegative matrix, irreducible      294—295
Nonnegative matrix, irreducible, eigenvalues of      296—298
Nonnegative matrix, irreducible, eigenvectors of      296—297
Nonnegative matrix, primitive      298
Nonnegative matrix, spectral radius of      288
Nonsingular matrix      8
Norm, matrix      157—162
Norm, vector      35 37—38
Normal distribution, multivariate      25—26 331—332 347—349
Normal distribution, singular      26 379
Normal distribution, univariate      20
Normalized vector      14
Null matrix      2
Null space      60—61
Null vector      2
One-way classification model, multivariate      119—122 154 406—407
One-way classification model, univariate      79—80 119 228—229 231—232 257—258 385—387 396—397
Order of a minor      13
Order of a square matrix      1
Orthogonal complement      52
Orthogonal complement, dimension of      52
Orthogonal matrix      14—15
Orthogonal vectors      14
Orthonormal basis      48—52
Orthonormal vectors      14
Partitioned matrix      11—13
Partitioned matrix, determinant of      249—250
Partitioned matrix, inverse of      247
Partitioned matrix, rank      46—47
Pearson's chi-squared statistic      411
Permutation matrix      15
Perturbation methods      337—344
Perturbation methods, eigenprojection      343—344
Perturbation methods, eigenvalue      339—343
Perturbation methods, matrix inverse      338—339
Poincare separation theorem      111
Polar coordinates      17
Positive definite matrix      15—16
Positive matrix      288
Positive matrix, eigenvalues      289—294
Positive matrix, eigenvectors      289—293
Positive matrix, spectral radius      288
Positive semidefinite matrix      15—16
Primitive matrix      298
Principal components analysis      107—108 404
Probability function      18
Projection (orthogonal)      50
Projection matrix      52—59
QR factorization      140
Quadratic form      15—16
Quadratic form and Moore — Penrose inverse      179—180
Quadratic form, distribution of      378—384
Quadratic form, expected value of      390—398
Quadratic form, generalized      399
Quadratic form, independence of      384—390
Random variable      18—22
Random vector      22—26
RANGE      43
Rank      13—14
Rank and linear independence      43—47
Rayleigh quotient      104
Reducible matrix      294—295
Regression      26—28 see
Regression with standardized explanatory variables      64—65
Regression, best quadratic unbiased estimator      358—360
Regression, F test      387—388
Regression, generalized least squares      141—142
Regression, multiple      55—58 248—249
Regression, principal components      96—98 136—138 163
Regression, ridge      123
Regression, simple linear      50—51
Regression, weighted least squares      65—66
Row space      43
Saddle point      345
Sample correlation matrix      25
Sample correlation matrix, asymptotic covariance matrix of      407—409
Sample covariance matrix      25
Sample covariance matrix, distribution of      402—403
Sample mean      25
Sample mean vector      25
Sample variance      25
Sample variance, distribution      383—384
Sample variance, independent of sample mean      388—389
Schur decomposition      149—153
Separating hyperplane theorem      73—74
Similar matrices      144
Simultaneous confidence intervals      121—122
Simultaneous diagonalization      118 154—157
Singular value decomposition      131—138
Singular value decomposition and system of equations      233—235
Singular values      133
Singular values and eigenvalues      135
Skew-symmetric matrix      4
Spanning set      33
Spectral decomposition      95 98 138
Spectral radius      159
Spectral set      98
Square root of a matrix      16 138—139
Stationary point      345
SubMatrix      11—13
Submatrix, principal      112
subspace      32
Sum of squares for error      27
Sum of squares for treatment      120
Sum of vector spaces      68
Supporting hyperplane theorem      73
Symmetric matrix      4
Taylor formula, first-order      323 325
Taylor formula, kth-order      324 325
Taylor formula, vector function      326
Toeplitz matrix      304—305
Trace      4—5
Trace and eigenvalues      90
Trace, derivative of      332
Transition probabilities      299
TRANSPOSE      3
Transpose product      114—115 142—144
Triangle inequality      18 36
Triangular matrix      2
Two-way classification model      244 259—260 313
Union-intersection procedure      121 367
Unit vector      14
Unitary matrix      18 150
Vandermonde matrix      307—309
Variance      19—20
Variance of quadratic form      391 394
Variance, sample      25
Vec operator      261—265
Vector      2
Vector norm      35
Vector norm, Euclidean norm      36 37
Vector norm, infinity norm      37
Vector norm, max norm      37
Vector norm, sum norm      37
Vector space      32
Vector space, basis of      41—43
Vector space, dimension of      41
Vector space, direct sum      69
Vector space, Euclidean      36
Vector space, intersection      67
Vector space, projection matrix of      52—59
Vector space, sum      68
Vector, normalized      14
Vector, null      2
Vector, orthogonal      14
Vector, orthonormal      14
Vector, unit      14
Wishart distribution      398—409
Wishart distribution and sample covariance matrix      402—403
Wishart distribution, covariance matrix of      401
Wishart distribution, mean of      401
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå