Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Schott J.R. — Matrix Analysis for Statistics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Matrix Analysis for Statistics
Àâòîð: Schott J.R.
Àííîòàöèÿ: A complete, self-contained introduction to matrix analysis theory and practice
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. As such, they have become a vital part of any statistical education. Unfortunately, matrix methods are usually treated piecemeal in courses on everything from regression analysis to stochastic processes. Matrix Analysis for Statistics offers a unique view of matrix analysis theory and methods as a whole.
Professor James R. Schott provides in-depth, step-by-step coverage of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors, the Moore-Penrose inverse, matrix differentiation, the distribution of quadratic forms, and more. The subject matter is presented in a theorem/proof format, and every effort has been made to ease the transition from one topic to another. Proofs are easy to follow, and the author carefully justifies every step. Accessible even for readers with a cursory background in statistics, the text uses examples that are familiar and easy to understand. Other key features that make this the ideal introduction to matrix analysis theory and practice include:
- Self-contained chapters for flexibility in topic choice.
- Extensive examples and chapter-end practice exercises.
- Optional sections for mathematically advanced readers.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 431
Äîáàâëåíà â êàòàëîã: 21.10.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Moore — Penrose inverse 171
Moore — Penrose inverse and projection matrices 172—173
Moore — Penrose inverse and quadratic form in normal random vectors 179—180
Moore — Penrose inverse and rank 175
Moore — Penrose inverse and singular value decomposition 172
Moore — Penrose inverse and spectral decomposition 176—177
Moore — Penrose inverse of a matrix product 180—185
Moore — Penrose inverse of a sum 186—187
Moore — Penrose inverse of a symmetric matrix 176—178
Moore — Penrose inverse of block diagonal matrix 186
Moore — Penrose inverse of diagonal matrix 177
Moore — Penrose inverse of partitioned matrices 185—186
Moore — Penrose inverse, computation of 175 197—199
Moore — Penrose inverse, continuity of 188—190
Moore — Penrose inverse, derivative of 333—334 336—337
Moore — Penrose inverse, existence of 171—172
Moore — Penrose inverse, properties 174—180
Moore — Penrose inverse, uniqueness of 171—172
Multicollinearity 96—98 136
Multinomial distribution 368
Multiplicity of an eigenvalue 86
Multivariate normal distribution 25—26 331—332 347—349
Negative definite matrix 16
Negative semidefinite matrix 16
Nilpotent matrix 127
Nonnegative definite matrix 16
Nonnegative definite matrix, correlation matrix 24
Nonnegative definite matrix, covariance matrix 23
Nonnegative matrix 288
Nonnegative matrix, irreducible 294—295
Nonnegative matrix, irreducible, eigenvalues of 296—298
Nonnegative matrix, irreducible, eigenvectors of 296—297
Nonnegative matrix, primitive 298
Nonnegative matrix, spectral radius of 288
Nonsingular matrix 8
Norm, matrix 157—162
Norm, vector 35 37—38
Normal distribution, multivariate 25—26 331—332 347—349
Normal distribution, singular 26 379
Normal distribution, univariate 20
Normalized vector 14
Null matrix 2
Null space 60—61
Null vector 2
One-way classification model, multivariate 119—122 154 406—407
One-way classification model, univariate 79—80 119 228—229 231—232 257—258 385—387 396—397
Order of a minor 13
Order of a square matrix 1
Orthogonal complement 52
Orthogonal complement, dimension of 52
Orthogonal matrix 14—15
Orthogonal vectors 14
Orthonormal basis 48—52
Orthonormal vectors 14
Partitioned matrix 11—13
Partitioned matrix, determinant of 249—250
Partitioned matrix, inverse of 247
Partitioned matrix, rank 46—47
Pearson's chi-squared statistic 411
Permutation matrix 15
Perturbation methods 337—344
Perturbation methods, eigenprojection 343—344
Perturbation methods, eigenvalue 339—343
Perturbation methods, matrix inverse 338—339
Poincare separation theorem 111
Polar coordinates 17
Positive definite matrix 15—16
Positive matrix 288
Positive matrix, eigenvalues 289—294
Positive matrix, eigenvectors 289—293
Positive matrix, spectral radius 288
Positive semidefinite matrix 15—16
Primitive matrix 298
Principal components analysis 107—108 404
Probability function 18
Projection (orthogonal) 50
Projection matrix 52—59
QR factorization 140
Quadratic form 15—16
Quadratic form and Moore — Penrose inverse 179—180
Quadratic form, distribution of 378—384
Quadratic form, expected value of 390—398
Quadratic form, generalized 399
Quadratic form, independence of 384—390
Random variable 18—22
Random vector 22—26
RANGE 43
Rank 13—14
Rank and linear independence 43—47
Rayleigh quotient 104
Reducible matrix 294—295
Regression 26—28 see
Regression with standardized explanatory variables 64—65
Regression, best quadratic unbiased estimator 358—360
Regression, F test 387—388
Regression, generalized least squares 141—142
Regression, multiple 55—58 248—249
Regression, principal components 96—98 136—138 163
Regression, ridge 123
Regression, simple linear 50—51
Regression, weighted least squares 65—66
Row space 43
Saddle point 345
Sample correlation matrix 25
Sample correlation matrix, asymptotic covariance matrix of 407—409
Sample covariance matrix 25
Sample covariance matrix, distribution of 402—403
Sample mean 25
Sample mean vector 25
Sample variance 25
Sample variance, distribution 383—384
Sample variance, independent of sample mean 388—389
Schur decomposition 149—153
Separating hyperplane theorem 73—74
Similar matrices 144
Simultaneous confidence intervals 121—122
Simultaneous diagonalization 118 154—157
Singular value decomposition 131—138
Singular value decomposition and system of equations 233—235
Singular values 133
Singular values and eigenvalues 135
Skew-symmetric matrix 4
Spanning set 33
Spectral decomposition 95 98 138
Spectral radius 159
Spectral set 98
Square root of a matrix 16 138—139
Stationary point 345
SubMatrix 11—13
Submatrix, principal 112
subspace 32
Sum of squares for error 27
Sum of squares for treatment 120
Sum of vector spaces 68
Supporting hyperplane theorem 73
Symmetric matrix 4
Taylor formula, first-order 323 325
Taylor formula, kth-order 324 325
Taylor formula, vector function 326
Toeplitz matrix 304—305
Trace 4—5
Trace and eigenvalues 90
Trace, derivative of 332
Transition probabilities 299
TRANSPOSE 3
Transpose product 114—115 142—144
Triangle inequality 18 36
Triangular matrix 2
Two-way classification model 244 259—260 313
Union-intersection procedure 121 367
Unit vector 14
Unitary matrix 18 150
Vandermonde matrix 307—309
Variance 19—20
Variance of quadratic form 391 394
Variance, sample 25
Vec operator 261—265
Vector 2
Vector norm 35
Vector norm, Euclidean norm 36 37
Vector norm, infinity norm 37
Vector norm, max norm 37
Vector norm, sum norm 37
Vector space 32
Vector space, basis of 41—43
Vector space, dimension of 41
Vector space, direct sum 69
Vector space, Euclidean 36
Vector space, intersection 67
Vector space, projection matrix of 52—59
Vector space, sum 68
Vector, normalized 14
Vector, null 2
Vector, orthogonal 14
Vector, orthonormal 14
Vector, unit 14
Wishart distribution 398—409
Wishart distribution and sample covariance matrix 402—403
Wishart distribution, covariance matrix of 401
Wishart distribution, mean of 401
Ðåêëàìà